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Abstract—The simulation tool CorRES models wind speed
in two parts. A deterministic part which uses meteorological
reanalysis data and a stochastic part modelling the short-term
variability not captured in the reanalysis data. The two parts of
this model have been validated separately. The validation and
parameterisation of their combination is the topic of this paper.
The models are tested and parameterised using measured data
from three different locations. The effect of the height and
year of measurement, on the parameters of the model is also
studied. The results of this paper indicate that the best-fitting
parameters depend on the measurement location and height.

I. INTRODUCTION

A. Motivation

The power generated by a wind turbine depends on the
weather conditions, which makes it a highly volatile power
source. For example, its short-term volatility affects the
reactive power support the wind turbine can provide and
thereby the voltage stability [1], [2]. Thus, to ensure the
reliable operation of grids including wind turbines it is
essential to model in detail the source of volatility, i.e. the
wind speed.

B. Literature Review

Correlations in Renewable Energy Sources (CorRES) is
a simulation tool developed at the Technical University of
Denmark, Department of Wind Energy [3]. CorRES can be
used to simulate the wind speed and/or the wind power
output at a specific location or for a specific system. It uses
the Weather Research and Forecasting (WRF) mesoscale
model to produce hourly wind speed time series on a 10 km x
10 km grid covering the area of interest [4], [5]. A limitation
of this mesoscale model and other similar models is that they
tend to underestimate the short-term wind variability [6].

To improve the modelling of the short-term fluctuations
in wind speed compared to using WRF data on its own,
CorRES includes a stochastic modelling component. The
stochastic fluctuation model is defined through its Power
Spectral Density (PSD) function [7]. In this work, the low
frequency spectrum used in [7] is replaced by the one
presented in [6]; the spectra slope -5/3 presented in [6]
provides a strong theoretical and empirical foundation for
correcting the WRF data PSD for the higher frequencies,
where spectral correction is required. These two parts of the
wind speed model, i.e. the mesoscale reanalysis data and the
stochastic model, have been validated independently [7], [8].
However, their combination has not yet been validated. The

parameter selection for the fluctuation spectra is dependent
on the WRF data spectra. Thus, the PSD of the WRF
data and the additional PSD of the fluctuations need to be
considered jointly to understand the resulting PSD of the
simulated wind speed data.

C. Contributions

In this paper, the CorRES model is tested using 10
minutely averaged data from three different locations [9],
[10]. It is considered how the parameterisation of the
stochastic model may differ for the different locations,
different heights and even different years. Through statistical
analysis of the data, the paper provides an approach to de-
termine the parameters for these three locations and analyse
how they compare for different heights. This approach can be
used to find the best-fitting parameters for any location/data
set.

D. Paper Organisation

The remainder of this paper is organised as follows.
Section II describes the wind speed modelling in the CorRES
simulation tool. In Section III, the three data sets used to test
the CorRES wind speed modelling method are presented.
The fitting of the data sets and the resulting parameterisation
of the CorRES models are discussed in Section IV. Finally,
in Section V conclusions are drawn.

II. WIND SPEED MODELLING IN CORRES

This section presents the modelling of wind speed in the
CorRES simulation tool. The models in CorRES consist
of two parts; the meteorological reanalysis data (see Sec-
tion II-A) and stochastic models (see Section II-B). CorRES
is able to simulate wind speed time series that capture the
temporal and spatial variations in wind speed by combining
the two as presented in Section II-C.

A. Meteorological reanalysis data

CorRES wind speed models are based on meteorological
reanalysis data obtained from the Weather Research and
Forecasting (WRF) model [4]. WRF is a mesoscale mod-
elling system. Thus, the down-scaling method presented in
[5] is used. The WRF model produces hourly wind speed
time series on a 10 km x 10 km grid covering the considered
area. Wind speed variations in the WRF data are smoothed
due to spatial and temporal averaging effects. Additionally,
as the WRF data is hourly, it does not model inter-hour



variations. Therefore, short-term wind speed fluctuations are
captured through the stochastic model added to the WRF
data as shown in Section II-B.

B. Stochastic simulation

The stochastic fluctuation model models the short-term
variability that is generally lacking in WRF data [6]. The
framework of stochastic fluctuation modelling, and how
to apply it in time series simulation, is presented in [7].
The fluctuations modelling includes the modelling of the
wind speed PSD for individual locations and the coherence
between locations.

The temporal behavior of fluctuations at each wind power
plant is modelled by specifing its PSD. The wind speed PSD
at frequencies that are lacking variability in WRF data can be
expected to follow a −5/3 power law as has been shown in
[6]. The PSD of the stochastic fluctuation models, providing
the additional variability missing in mesoscale reanalysis
data, is modelled as:

Slf (f) =
a1

f
5/3
0 + f5/3

for f > f0, (1)

where f is frequency and a1 is the coefficient of the spectra.
Fluctuations are added only on frequencies higher than f0.
In addition to (1), the stochastic fluctuation simulation model
in CorRES considers turbulence, as shown in [7]. However,
the addition of the turbulence PSD has a very small influence
on the studied 10 minute resolution and is therefore not
considered in this work.

C. Combining reanalysis data and fluctuations

The CorRES wind speed model is a combination of the
WRF reanalysis data, vWRF

t , and the simulated fluctuations,
vfluctst . Thus,

vt = vWRF
t + vflucts

t (2)

where vt is the wind speed time series generated in CorRES.
In CorRES the wind speeds for multiple locations can be
simulated simultaneously. The vWRF

t is correlated spatially
and temporally and so is the vflucts

t component. vflucts
t has

the expected value zero. Therefore, it does not affect the
long-term mean wind speed of the vWRF

t .
In Figure 1 an example of the Power Spectral Density

(PSD) of the WRF data with and without fluctuations is
shown. In this case the parameters for the PSD in (1) are
a1 = 2.5 ·10−4 and 1/f0 = 8 hours. It shows that by adding
the fluctuations, vflucts

t , to the WRF data, vWRF
t , the PSD

for the higher frequencies is increased.
Example wind speed time series generated in CorRES

are shown in Figure 2. When vWRF
t is considered on its

own the inter-hour wind speed is determined through linear
interpolation.

The wind speed fluctuations, modelled using (1), are
dependent on the two parameters, namely f0 and a1. The
parameters define the intensity (a1) and the frequency range
(f0) of the generated fluctuations. Two vt time series were
different f0 and a1 parameters are utilized are compared
in Figure 2. The difference between the two time series
highlights how much the modelled wind speed fluctuations
may vary dependent on the selected parameters. Through the
tuning of the parameters, a1 and f0, the PSD of vt can be set
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Figure 1. Example PSD of vWRF
t with the theoretical fluctuations as

defined in (1), with stochastic simulated fluctuations vflucts
t and without

including fluctuations.

to match the PSD of measured wind speed data and thereby
produce more realistic wind speed time series.
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Figure 2. Example time series of WRF data with and without fluctuations.
The different fluctuation scenarios are: Flucts1 where a1 = 2 · 10−4 and
f0 = 1/5 h and Flucts2 where a1 = 3 · 10−4 and f0 = 1/13 h.

III. WIND SPEED DATA SETS

To validate and parameterise the wind speed model pre-
sented in Section II three sets of wind speed data are
considered. The details of these data sets are presented in
Table I. Each data set consists of wind speed measurements
sampled every 10 minutes in an onshore location.

Table I
THE THREE SETS OF MEASURED WIND SPEED DATA.

Data Hub
Set Name Location heights [m] Time
1 Hovsore 56.44◦N, 80 5 years (2006-2010)

8.15◦E
2 Cabauw 51.97◦N, 80 6 years (2001-2006)

4.93◦E
3 Risø 55.69◦N, 77 4 years (2000-2003)

12.09◦E



Data Set 1 and 3 include measurements collected for the
DTU Online Meteorological Data base [9]. This data base
includes wind speed measurements from several locations
in Northern Europe including Greenland, Denmark, Sweden
and Faroe Islands. The two data sets (Hovsore and Risø)
studied in this paper include measurement data collected in
Denmark.

Data Set 2 includes measurements gathered at the Cesar
Observatory located in the western part of the Netherlands.
These measurements are publicly available in [10].

IV. RESULTS

In this section the CorRES wind speed models presented
in Section II are utilized to model the three data sets
presented in Section III. To determine the best parameters for
the CorRES stochastic fluctuation model the autocorrelation
of the data and the simulated time series are compared as
discussed in Section IV-A. The simulated time series and
the best-fitting parameters for each scenario are presented in
Section IV-B and the results discussed in Section IV-C.

A. Fitting

Autocovariance is the equivalent of the Power Spectral
Density (PSD) in the time domain. The standard deviation
of the wind speed time series simulated using CorRES is
mostly defined by the reanalysis data as the fluctuations
only impact the higher frequencies. The autocorrelation is
the normalized autocovariance. That is the autocovariance
with the effect of the standard deviation removed. For these
reasons, the autocorrelation is chosen as a comparison metric
for the selection of the best fluctuation model parameters.

Figure 3 shows the autocorrelation of CorRES wind speed
time series with and without fluctuations for Data Set 1.
Results show that the WRF data on its own does not
capture the autocorrelation of the data for the first few
hours. By adding the stochastic fluctuations to the WRF
data the autocorrelation can be shifted to better match the
autocorrelation of the measured data.
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Figure 3. The autocorrelation of Data Set 1 (in black), of the time
series simulated using CorRES without fluctuations (dark grey) and with
fluctuations (lighter grey) for the different parameter combinations as listed
in Table II. The autocorrelation of the best-fitting simulated time series
(1/f0 = 10 hours and a1 = 2 · 10−4) is shown in red.

To analyse the fit of the simulated time series, compared
to measured data, the Root Mean Square Error (RMSE) of
the autocorrelations is found as:

RMSEACF =

√∑h
i=0(yi − xi)2

h
, (3)

where yi and xi are the autocorrelation of the modelled
time series and the measured data at time lag i, respectively.
The parameter h defines how many hours of time lags are
considered for the comparison. In this work h is selected to
be 10 hours.

The simulated time series utilizing different fluctuation
parameters are compared through their computed RMSEACF

values. The lower the RMSEACF value the better the fit.

B. Simulation

The wind speed fluctuations, modelled using (1), are
dependent on the selection of the two parameters, namely
f0 and a1. The parameters define the intensity (a1) and the
frequency range (f0) of the generated fluctuations.

In [6] it is shown that the reanalysis data may lack
variability in time scales of upto a few hours. This is
demonstrated in Figure 4 for the measured data of Data
Set 1 and the equivalent WRF data. The PSD of the WRF
data becomes less accurate for frequencies of about 1/10
hours−1. This inaccuracy can be corrected in part by adding
stochastic fluctuations. The f0 parameter for the stochastic
fluctuations model is set according to this. Therefore, in this
paper the f0 parameter is tested in the range 1/f0 = 4− 13
hours. This range for f0 is highlighted in Figure 4.
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Figure 4. The PSD of the measured data of Data Set 1 and the equivalent
WRF data with and without fluctuations. In this case the fluctuation
parameters are set to be a1 = 2.5 · 10−4 and 1/f0 = 10 hours.

In [11], the parameter a1 is identified to be 3 ·10−4 for an
offshore location in Denmark. However, in that case study,
the parameter a1 was selected for modelling the PSD without
considering the contribution of the PSD of the WRF data in
the higher frequencies. Thus, in this paper a1 = 3·10−4 is the
highest value considered and lower values a1 = [1.5, 2, 2.5] ·
10−4 are also considered.

To find the best parameter combination, for a1 and f0,
40 combinations are tested. These combinations are listed



Table II
THE RMSEACF VALUES FOR THE DIFFERENT PARAMETER

COMBINATIONS FOR MODELLING DATA SET 1 MEASURED AT HEIGHT 80
METERS. THE LOWEST RMSEACF AND THEREBY THE BEST FIT IS

HIGHLIGHTED IN RED.

1/f0 [hour]\ a1 1.5 · 10−4 2 · 10−4 2.5 · 10−4 3 · 10−4

4 0.0179 0.0152 0.0127 0.0103
5 0.0163 0.0131 0.0101 0.0075
6 0.0138 0.0106 0.0073 0.0053
7 0.0125 0.0086 0.0057 0.0057
8 0.0109 0.0067 0.0047 0.0069
9 0.0086 0.0046 0.0046 0.0089
10 0.0053 0.0026 0.0066 0.0123
11 0.0045 0.0027 0.0076 0.0136
12 0.0032 0.0042 0.0107 0.0173
13 0.0031 0.0052 0.0119 0.0187

in Table II. The autocorrelation of the measured data is
compared to each of the autocorrelation functions of the time
series generated using CorRES with the different parameter
combinations. Table II shows the RMSEACF values for the
fit of Data Set 1 at height 80 meters for the full data set,
that is years 2006-2010. In this case the best parameters
are gound to be a1 = 2 · 10−4 and 1/f0 = 10 hours as
highlighted in Table II. In Figure 3 the autocorrelation for
Data Set 1, at height 80 meters and the 40 simulated CorRES
time series is shown. The best fit is highlighted in red. This
analysis is repeated for each case in the remainder of this
study to find the best parameter combination.

Furthermore, the effect of the measurement height and
measurement year on the parametrisation of the stochastic
model is studied for Hovsore (Data Set 1). Each year of
data in Data Set 1, that is 2006 through 2010 is considered
individually for two different measurement heights, 80 and
100 meters. The best-fitting parameters for each case are
presented in Table III (a). From Table III (a) it can be
observed that typically for higher measuring heights the a1

parameter is bigger while the 1/f0 parameter is smaller. The
best parameters also vary between years with a1 ranging
from 1.5−2.5 ·10−4 and the 1/f0 value ranging from 7−11
hours.

The same analysis is done for the two remaining data
sets, Data Set 2 and 3. For Data Set 2 the years 2001
through 2006 are analysed for measurement heights 80 and
140 meters. The results for Data Set 2 are presented in
Table III (b). In the case of Data Set 3 the years 2000
to 2003 are analysed at measurement heights 77 and 125
meters and the results are outlined in Table III (c). Both
data sets demonstrate the same results as Data Set 1, that
is the best-fitting parameters change with height and year.
Further discussion on the results is provided in the following
section, Section IV-C.

C. Discussion

The results in Table III indicate that the parameter a1

may range from 1.5 − 3 · 10−4 while 1/f0 ranges between

Table III
THE BEST-FITTING PARAMETER COMBINATIONS FOR THE THREE DIFFERENT DATA SETS. EACH TABLE CONTAINS THE BEST PARAMETERS FOUND

FOR EACH YEAR OF MEASURED DATA FOR TWO DIFFERENT MEASUREMENT HEIGHTS. THE PARAMETERS LISTED IN THE TABLE ARE THE MEAN
VALUE (µ) AND THE STANDARD DEVIATION (σ) OF THE MEASURED DATA AS WELL AS THE BEST-FITTING PARAMETERS a1 AND f0 FOR THE

FLUCTUATION MODEL IN (1).

(A) DATA SET 1 (HOVSORE).

Year\Height 80 m 100 m
µ σ a1 1/f0 µ σ a1 1/f0

2006 8.5260 4.0389 1.5 · 10−4 11 8.8057 4.1848 2 · 10−4 9
2007 9.4431 4.7028 2 · 10−4 11 9.7571 4.8270 2 · 10−4 9
2008 9.0925 4.5756 2.5 · 10−4 11 9.4034 4.7137 2.5 · 10−4 10
2009 8.5796 4.0661 2 · 10−4 9 8.8984 4.1823 2.5 · 10−4 7
2010 8.3104 3.8343 1.5 · 10−4 10 8.7134 3.9643 2.5 · 10−4 8
2006-2009 8.7905 4.2771 2 · 10−4 10 9.1158 4.406 2.5 · 10−4 8

(B) DATA SET 2 (CABAUW).

Year\Height 80 m 140 m
µ σ a1 1/f0 µ σ a1 1/f0

2001 6.7988 2.9904 2.5 · 10−4 9 7.8288 3.5034 3 · 10−4 9
2002 7.0747 3.4289 1.5 · 10−4 9 8.1122 3.9629 2 · 10−4 9
2003 6.5109 2.9303 2 · 10−4 11 7.5091 3.4980 2.5 · 10−4 9
2004 6.9012 3.3291 2 · 10−4 10 7.9137 3.8754 3 · 10−4 8
2005 6.6889 3.1153 1.5 · 10−4 9 7.7016 3.6787 2 · 10−4 9
2006 6.9716 3.0583 2.5 · 10−4 9 8.0228 3.5998 3 · 10−4 9
2001-2006 6.8243 3.1527 2 · 10−4 9 7.8481 3.6961 2.5 · 10−4 9

(C) DATA SET 3 (RISØ).

Year\Height 77 m 125 m
µ σ a1 1/f0 µ σ a1 1/f0

2000 7.0311 3.2968 2 · 10−4 10 8.7038 3.1286 3 · 10−4 8
2001 6.7525 3.1746 1.5 · 10−4 10 7.5280 3.4895 2.5 · 10−4 8
2002 6.9965 3.2493 2 · 10−4 11 7.3052 4.4228 2.5 · 10−4 9
2003 6.6988 3.3463 2 · 10−4 11 6.8625 4.0146 2.5 · 10−4 9
2000-2003 6.7610 3.3463 2 · 10−4 10 7.3789 3.8901 2.5 · 10−4 9



7 and 11 hours depending on the measurement year, height
and location. It can be observed that the best-fitting values
for a1 and 1/f0 are dependent on one another. This is
further demonstrated with the scatter plot of a1 and 1/f0

values in Figure 5. For larger values of a1, the corresponding
value of 1/f0 tends to be smaller. Figure 5 shows that for
higher measurement heights the best-fitting parameter a1

gets bigger and the value of 1/f0 is consequently lower.
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Figure 5. Scatter plot of best parameter combinations. The Hovsore results
are shown in red, the Cabauw results in blue and the Risø results in green.
The lower measurement heights are marked with a circle and the higher
measurement heights with a �. The size of the markers indicates if there
are multiple cases with the same best parameter combination.

In Tables III, different years of measurements are shown.
To distinguish between the years the mean (µ) and standard
deviation (σ) of the measured data for that year are presented
in the table. Results indicate that the parameter a1 tends to
be bigger if the mean wind speed is bigger. However, more
analysis on more data is needed to confirm the connection
between a1 and the mean of the wind speed.

It can be concluded from Tables III and Figure 5 that a
good value for the a1 parameter is 2 ·10−4 and that the 1/f0

parameter should be selected in the range 9− 11 hours, for
measurement heights of about 80 meters. For measurement
heights of 100 meters and above a value of a1 = 2.5−3·10−4

might be better suited while coupled with a lower 1/f0 value.

V. CONCLUSION

The paper deals with the modelling of wind speed in the
simulation tool CorRES. The wind speed models in CorRES
are composed of reanalysis data and stochastic models. The
paper considers the parameterisation of the stochastic part
of the CorRES wind speed model while considering the
contribution of the reanalysis data for short-term analysis
of power systems including wind.

Three sets of measurement data are considered in the
paper for different measurement heights, locations and years.
The best-fitting parameters are found to be dependent on
the measurement height, year and location. However, for
the measurement height of about 80 meters the best-fitting
parameters are found to be in agreement between the three
locations.

ACKNOWLEDGMENT

The authors would like to thank DTU Wind Energy for
providing access to meteorological data from the RODEO
on-line database (rodeo.dtu.dk).

This work is supported by the Science Foundation Ire-
land, by funding G. M. Jónsdóttir and F. Milano un-
der project AMPSAS, Investigator Programme, Grant No.
SFI/15/IA/3074.

Matti and Poul acknowledge support from the NSON-DK
(Danish Energy Agency, EUDP, grant 64018-0032; previ-
ously ForskEL) and PSfuture (La Cour Fellowship, DTU
Wind Energy) projects.

REFERENCES

[1] M. Sarkar, M. J. Koivisto, M. Altin, and P. E. Sørensen, “Impact of
power fluctuations in reactive power capability of wind power plants,”
in Cigre Aalborg 2019: International Symposium, 2019.

[2] T. Souxes, I.-M. Granitsas, and C. Vournas, “Effect of stochasticity on
voltage stability support provided by wind farms: Application to the
Hellenic interconnected system,” Electric Power Systems Research,
vol. 170, pp. 48–56, 2019.

[3] M. Koivisto, K. Das, F. Guo, P. Sørensen, E. Nuño, N. Cutululis,
and P. Maule, “Using time series simulation tools for assessing the
effects of variable renewable energy generation on power and energy
systems,” Wiley Interdisciplinary Reviews: Energy and Environment,
vol. 8, no. 3, p. e329, 2019.

[4] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,
W. Wang, and J. G. Powers, “A description of the Advanced Research
WRF version 3. NCAR Technical note-475+ STR,” 2008.

[5] A. N. Hahmann, D. Rostkier-Edelstein, T. T. Warner, F. Vandenberghe,
Y. Liu, R. Babarsky, and S. P. Swerdlin, “A reanalysis system for
the generation of mesoscale climatographies,” Journal of Applied
Meteorology and Climatology, vol. 49, no. 5, pp. 954–972, 2010.

[6] X. G. Larsén, S. Ott, J. Badger, A. N. Hahmann, and J. Mann,
“Recipes for correcting the impact of effective mesoscale resolution
on the estimation of extreme winds,” Journal of Applied Meteorology
and Climatology, vol. 51, no. 3, pp. 521–533, 2012.

[7] P. Sørensen, N. A. Cutululis, A. Vigueras-Rodríguez, H. Madsen,
P. Pinson, L. E. Jensen, J. Hjerrild, and M. Donovan, “Modelling of
power fluctuations from large offshore wind farms,” Wind Energy: An
International Journal for Progress and Applications in Wind Power
Conversion Technology, vol. 11, no. 1, pp. 29–43, 2008.

[8] E. Nuño, P. Maule, A. Hahmann, N. Cutululis, P. Sørensen, and
I. Karagali, “Simulation of transcontinental wind and solar PV gen-
eration time series,” Renewable Energy, vol. 118, pp. 425–436, 2018.

[9] DTU Online Meterological data (2019). [Online]. Available:
http://rodeo.dtu.dk/

[10] Cesar, Cabauw Experimental Site for Atmospheric Research (2019).
[Online]. Available: http://www.cesar-database.nl/

[11] X. G. Larsén, C. Vincent, and S. Larsen, “Spectral structure of
mesoscale winds over the water,” Quarterly Journal of the Royal
Meteorological Society, vol. 139, no. 672, pp. 685–700, 2013.


