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Abstract—This paper presents a statistical study on the im-
pact of topology of the transmission system on the transient
and frequency stability of power systems. We consider four
topologies: random graph; small-world graph; nested small-
world graph; and lattice graph. These graphs are utilized to
generate hundreds of synthetic networks with given topology
and adequately generated static and dynamic data. Then, each
network is simulated based on a Monte Carlo method and
considering random contingencies and different levels of inertia.
The case study allows drawing some remarkable conclusions on
the correlation between power system stability and topology.

Index Terms—Network topology, transient stability, frequency
stability, synthetic networks, Monte Carlo simulation.

I. INTRODUCTION

The availability of the data of real-world large power
systems is scarce and often subject to strict confidentiality
agreements. This has significantly limited data sharing and,
hence, the ability to reproduce results. Even if data of real-
world systems were public domain, however, these would
not constitute a valid statistical population sample, as there
are not actually many large interconnected systems in the
world. A Monte Carlo analysis of the impact of topology
on interconnected systems is thus only possible through the
generation of synthetic networks.

A few algorithms are available in the literature. In [1] and
[2], a tree-structured power model is used to study power
grid robustness and cascading failure blackouts, in [3] a ring-
structured power grid is developed to study the pattern and
speed of contingency. An algorithm to generate power system
based on small-world graphs is presented in [4]. A mechanism
of chain failure steps in a large-scale grid is studied in [5]
also based on the small-world graph model. In [6], a random
topology power grid model, called nested small-world, based
on a comprehensive study of the topology and electrical
properties of realistic grids is proposed. In [7] synthetic power
networks are created using a clustering technique to locate the
substations according to public U.S. vensus database records.
A set of validation criteria is used to add a network of
transmission lines at multiple voltage levels so that the built
synthetic networks can match the statistical characteristics
found in actual power networks.

The works above are aimed at generating steady-state data
and are being utilized to generate realistic synthetic networks

for power flow and optimal power flow studies [7]. The
generation of synthetic dynamic data has not been treated
systematically so far. However, it is relatively easy to address
this task, as typical data for synchronous machines and their
regulators can be found in the literature, an pu values of ma-
chines and regulators of a given technology, tend to distribute
in a small range [8].

Given the ability to generate an arbitrary large number of
networks with different topologies, an interesting question that
arises is whether a specific topology is structurally more stable
than others. Of course, the topology of existing real-world
networks cannot be drastically modified, but to understand
which topology is expected to be more robust than others, can
be a valuable information for network expansion planning and
for wide-area controllers that can be designed to “emulate” a
certain topology. This is the research question tackled in this
paper.

With this aim, four topologies are considered: random
graph; small-world graph; nested small-world graph; and
lattice graph. For each topology, we first generate a set of
synthetic networks along with steady-state of transmission
lines and loads and dynamic data of synchronous machines.
Then the parameters of branches and synchronous machines
are generated based on adequate distributions. Each network
is finally simulated considering random contingencies to test
both transient and frequency stability.

II. GENERATION OF SYNTHETIC NETWORKS

To generate synthetic networks, we follows three steps.
First, the graph is generated so that it satisfies certain specifica-
tions, such as average number of connections and connectivity
of each nodes. The nodes of the graph are the buses of the
network and the arcs connecting the buses are transmission
lines and transformers. Then, a predefined amount of buses
are designated as loads and another amount as generators.
Finally, the steady-state parameters of the branches, loads and
generators, as well as dynamic parameters of synchronous
machines are assigned using distributions that resembles real-
world networks. The remainder of this section describes these
steps.



A. Network Topology

The starting point of the generation of the topology of a
synthetic network is a graph G(n,m), where n is the number
of nodes and m the number of edges. For the purposes of this
work, the graph can be represented trough an m×n incidence
matrix A:{

ah,i = 1, ah,j = −1, if edge h connects nodes i and j
ah,l = 0. if l 6= i, j

(1)
The topology of a grid network can be fully defined by its
n×n Laplacian matrix, which can be obtained as L = ATA
with

`i,j =


−1, if there exists an edge i− j, for i 6= j

k, with k =−
∑

i 6=j `i,j , for i = j

0, otherwise.
(2)

where k is the number of connections, or degree of each node.
For synthetically generated graphs, a relevant parameter is the
average degree 〈k〉, that indicates the average number of edges
of each node. Finally, let L be the typical distance between
any two nodes. Then the average distance lG can be derived
as follows:

lG =
2

n(n− 1)

∑
i,j

Li,j (3)

The topologies considered in this paper are defined as
follows.

1) Random graph: The number of edges, m, is given. Then
the existence of every possible edge occurs with probability
0 < p < 1, with p = 1/〈k〉. The theory of random graph has
its roots in the pioneering work by Erdős-Rényi [9]. It can be
shown that, for a given 〈k〉, random graphs minimize L.

2) Lattice: Each node is connected only to a constant
number of neighboring nodes, i.e., has a 〈k〉 = k = const.
edges. It can be shown that, for a given k, lattices have the
largest L.

3) Small-world graph: Similarly to the lattice, each node
has a given number 〈k〉 of edges to neighboring nodes. A small
number of nodes, however, are randomly connected to remote
nodes. This is the Watts-Strogatz graph model presented in
the famous paper [4] which can be shown to have L = log(n)
and, hence, approximate the L as a random graph with same
〈k〉.

4) Nested small-world graph: This topology is based on
the concept of small-world graph. In [6], it has been shown
that large power grids, e.g., n > 300, do not have exactly the
properties of a pure small-world graph. Nodes that are geo-
graphically very far away, in fact, are very unlikely connected.
Reference [6] proposes thus to generate large synthetic power
systems as a cluster of r smaller small-world graphs with an
average number of nodes 〈s〉, with r · 〈s〉 ≈ n. This kind of
networks requires the definition of an additional parameter,
namely the average 〈c〉 connections among clusters.

B. Network Data

Once the topology is defined, one has to populate the
grid with the static and dynamic data of branches, loads and
generators.

1) Transmission line and transformer parameters: The
admittance matrix Ȳ of the electric network is obtained from
the incidence matrix A as:

Ȳ = ATΛ−1(z̄L)A (4)

where Λ(·) is a diagonal matrix whose size elements are
those of its argument vector, and z̄L is the vector of the m
impedances of the network branches.

The imaginary part of z̄L, i.e., branch reactances, are
generated by means of a Gamma distribution [6], whose PDF
function is:

f(x) =
1

baΓ(a)
xa−1ex/b (5)

where a and b are the shape and scale factors, respectively. 1

Finally, the resistance of each branch is obtained by multiply-
ing the reactance for a coefficient, say kr, generated with a
uniform distribution in a given range.

2) Steady-state load and generator data: In a typical real-
world electric grid, 20-40% are generation buses; 40-60%
are load buses and 10-20% are the connection buses [6].
Therefore, in this work, 65% of all the total network buses of
the system, n, are loads and 25% of buses are generation which
are chosen randomly from total buses in a given topology. The
total power generation and consumption are defined as:

pG,tot = kG · n, pL,tot = (1− kL) · pG,tot , (6)

where kG and kL are heuristic coefficients, chosen so that
the probability that the power flow analysis of the resulting
synthetic network is feasible is above a certain threshold,
e.g., 95%. Then, the power of each generator and load is
generated randomly using a given distribution and such that
their sums equal pG,tot and pL,tot, respectively. Finally, load
power factors and generator terminal bus voltage magnitudes
are generated considering a uniform distribution.

3) Dynamic data: The focus of this paper is on tran-
sient and frequency stability analysis. For transient stability
analysis, we assume that generators are modeled through
the classical second-order model. For frequency stability a
fourth order dq-axis synchronous machine model and first
order turbine governor and automatic voltage regulators are
considered (see [10]).

The rated capacity, inertia H and damping D of syn-
chronous machines are generated based on uniform distribu-
tions in a given range deduced considering typical power plant
data given in [8]. Other machine and controller parameters
are assumed to be the same per-unit average values – again
based on [8] – for all machines. Finally, to simulate different

1We have also considered other distributions discussed in [6], such as the
double-Pareto log-normal distribution, and the shifted geometric distribution,
but results are similar to those obtained with (5) and are not discussed here.



(a) Random (b) Lattice

(c) Small-world (d) Nested small-world

Fig. 1: Examples of network topologies considered in the case study (n ≈ 350). : (a) G(350, 469), (b) G(361, 684), (c)
G(350, 700), (d) G(343, 517).

levels of non-synchronous generation, a certain percentage of
generators are modeled as distributed energy resources [11].

III. CASE STUDY

The transient and frequency stability responses of the
topologies discussed above are tested in this section. The
objective of the case study is to determine which topology
has a higher expectation to be stable following a random three-
phase fault or a random load or generator outage. With this
aim, a thousand synthetic networks are generated per each
topology and, per each network, a time domain simulation
after a random contingency is carried out.

The parameters utilized to generate the synthetic networks
are as follows. Topologies are generated assuming n = 1000,

〈k〉 = 〈c〉 = 4, and r = 5. Figure 1 depicts representative
graphs of the four topologies considered in this work. The
shape and scale factors in (5) to generate branch reactances
are chosen as a = 1.88734 and b = 0.05856, respectively.
The factor utilized to calculate branch resistances based on
the reactances defined above is generated with a uniform
distribution in the range [0.08, 0.12]. Finally, power flow
and relevant synchronous machine parameters and distribution
ranges are shown in Table I. For each topology, we consider
four scenarios, namely a different percentage of generators, say
α, modeled as synchronous machines. The values considered
are α = {10, 20, 40, 60}%. For each topology and scenario,
500 synthetic networks are generated.



TABLE I: Parameters to generate power flow and dynamic
data

Gamma distribution for xL a = 1.88734, b = 0.05856
Branch resistance coefficient kr = uniform(0.08, 0.12)
Generator active power coefficient kG = 0.142
Power flow generator voltage vG = uniform(1.01, 1.05) pu
Load active power coefficient kL = 0.0255
Load power factor cosφL = uniform(0.9, 1)
Inertia constants of generators H = uniform(1, 6) s
Damping coefficients D = uniform(0.05, 1) pu
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Fig. 2: Transient stability analysis: percentages of stable
simulations following a three-phase short-circuit.

All simulations are obtained using Dome, a Python based
power system analysis software tool that allows solving large
power systems modeled as a set of DAEs [12]. The algorithms
to generate the random, small-world, and lattice topologies
have been based on existing Python libraries, namely Net-
workx and Graph-tool. The nested small-world algorithms was
implemented ad hoc based on [6].

A. Case 1: Transient stability analysis

In this first case, we study the probability of the loss of
synchronism for the four considered topologies and different
inertia levels, α, following a three-phase fault that occurs at a
randomly picked bus and is cleared after 50 ms.

Figure 2 shows the results for the transient stability analysis.
It is important to note that results per each topology and
inertia level are not indicative per se, but only relative to
each other. As expected, independently from the topology, the
higher the percentage of synchronous machines with respect
to the total generation, i.e., the higher the total inertia, the
higher the percentage of stable simulations after the fault
clearing. The fact is that the random topology is the most
stable, while the lattice is the least. Small-world and nested
small-world topologies show intermediate properties between
the two extremes, being the small-world almost as stable as
the lattice.
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Fig. 3: Frequency stability analysis: percentages of stable,
simulations following a loss of load.
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Fig. 4: Frequency stability analysis: percentages of stable,
simulations following a loss of generation.

B. Case 2: Frequency stability analysis

In this second case, we consider the frequency response of
the four topologies after a loss of load and loss of generation,
selected randomly per each network. A simulation is assumed
to be stable if 20 s after the contingency, the frequency of the
center of inertia of the system is within a given range, namely
[0.984, 1.016] pu(Hz).

Figures 3 and 4 show the results for each scenario and
inertia level. In this case, the level of inertia is not crucial
for the system as the load outage is never causing a loss of
synchronism. Results, however, confirm the trend observed
for the transient stability analysis, namely, the lower the
average distance between nodes, the lower the number of



stable simulations.

CONCLUSIONS

The case study carried out in this work leads to some
remarkable conclusions. From a topological point of view,
random graphs are assumed to have more interesting properties
than regular lattices. Moreover, from a dynamical perspective,
we obtain the same result, namely lattices are less stable
that random networks. It is also interesting to observe that
small-world topologies, which are typical of medium-size
power systems, are similar to random networks in terms
of topological properties, and, at the same time, similar to
lattices with respect to stability analysis. Hence, the typical
structure of medium-size power grids is also almost the best
possible topology. Large interconnected networks, however,
which tends to have a topology similar to a nested-small world,
appears to be statistically more stable than smaller ones.

The lower stability of the lattice can be qualitatively ex-
plained in terms of its topological property to have the higher
average distance between any two nodes [4]. This also means
that the dynamic coupling between any two synchronous
machines is weaker. On the other hand, random networks have
the minimum average distance between any two buses, which
leads to a strong dynamic coupling of all machines. Hence,
from a dynamic point of view, increasing the interconnections
among distant points of a power system can make the system
strongr. This conclusion is consistent with respect to the well-
known fact that increasing the number of interconnections in-
creases the available transfer capability of an electric network
– see for example, recent discussions on the European “super
grid”, e.g., [13], a project that is mainly driven by economic
considerations.

Future work will focus on the definition of proper control
strategies to allow increasing the connectivity of large power
systems – which increases the topological randomness of the
grid – while retaining the stability of more regular, e.g., small-
world, topologies.
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[9] P. Erdős and A. Rényi, “On random graphs I.” Publicationes Mathemat-
icae (Debrecen), vol. 6, pp. 290–297, 1959.

[10] F. Milano, Power system modelling and scripting. London: Springer,
2010.

[11] “Eurostag User Manual,” Tractebel Engineering GDF SUEZ – RTE,
available at http://www.eurostag.be.

[12] C. J. Tavora and O. J. M. Smith, “Characterization of equilibrium
and stability in power systems,” IEEE Trans. on Power Apparatus and
Systems, vol. PAS-91, no. 3, pp. 1127–1130, 1972.

[13] D. V. Hertem, M. Ghandhari, and M. Delimar, “Technical limitations
towards a supergrid – a european prospective,” in IEEE Int. Energy
Conf., Dec 2010, pp. 302–309.


