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Abstract—The paper presents a study on the impact of uncer-
tainty on the dynamic response of electric power systems. Three
sources of uncertainty are considered, namely, (i) uncertainty in
the values of the parameters of physical devices; (ii) uncertainty
in the models of dynamic devices; and (iii) variations of the
parameters and the numerical scheme to integrate the differential
algebraic equations that describe the system. A Monte Carlo
analysis is used to define the impact of each source of uncertainty
as well as all sources together on the dynamic response of the
well-known IEEE 14-bus system.

I. INTRODUCTION

In recent years, power systems all around the world have

undergone a drastic restructuring that has led, among other

aspects, to a significant increase of the capacity of non-

dispatchable energy resources, such as wind and photovoltaic

power plants. This has brought the attention on the impact of

uncertainty on the behaviour of power systems. While uncer-

tainty affects all aspects of the power system at different time

scales, the focus of this paper is on transient stability analysis.

With this regard, the paper shows a set of simulation results

that partially debunk the common belief that deterministic

models of power systems are reliable and accurate.

Time domain integration is the backbone of angle and

voltage stability analyses of power systems [1]. The high

nonlinearity of the power system model, in fact, prevents

using the plethora of mathematical tools to predict the re-

sponse and define the control of linear systems. Moreover, the

complexity and variety of devices and controllers that real-

world power systems include make impossible in practice to

use effectively direct methods based on the Lyapunov second

stability criterion. Numerical time-domain integration is thus

the only reliable tool to define the dynamic behaviour of power

systems in industrial applications. Moreover, the research and

implementation of efficient integration schemes [2], [3] and the

development of algorithms based on parallel computing [4]–

[6] have also drastically reduced the computational burden of

such an approach.

The study of the impact of uncertainty on the transient be-

haviour of power systems is not a particularly active research

area. There are, of course, recent studies that consider stochas-

tic processes [7]–[10]. However, there is the common belief,

especially by industry, that the transient stability analysis of

power systems is relatively robust and reliable. In other words,

despite the several simplifications and uncertainties that in-

evitably affect the model of the power system itself, results are

expected to be conservative. Moreover, the level of uncertainty

affecting transient stability studies is commonly considered

not significant enough to seriously affect the behaviour of the

system. In this paper, we show, however, that even neglecting

the sources of stochastic processes, the complexity of power

system models, i.e., their inherent nonlinearity, along with

the uncertainty that affects parameters, models, and numer-

ical methods can actually modify consistently the transient

response of power systems.

The analyses carried out in the paper are as follows.

• A Monte Carlo analysis of the effect of parameter and

model uncertainty, as well as a sensitivity analysis of the

parameters of the numerical scheme to solve the time

domain-integration of power systems. This analysis is

aimed to identify the impact of each kind of uncertainty

alone. Then, the combined effect of all sources of uncer-

tainty together is discussed.

• A discussion on basic statistical properties, e.g., expec-

tation and variance of the trajectories obtained with the

Monte Carlo analysis above. Such quantities complement

the information obtained with the standard deterministic

model and provide a quantitative tool to evaluate the

confidence degree of such a model.

The case study presented and discussed in the paper shows

that the dynamic response of deterministic power system

models has to be considered with caution. While the effect

of the uncertainty of each parameter is likely negligible, the

combined effect of all uncertainties above can have a drastic

impact on the behaviour of the system. This result is certainly

a byproduct of the high nonlinearity of power system models.

This conclusion and its consequences on the interpretation of

power system dynamic simulations is the main contribution of

the paper.

II. POWER SYSTEM MODEL

This section provides a brief overview of the formulation

of power system differential-algebraic equations as well as the



models of dynamic devices considered in the case study. While

the latter are well-known, recalling such models helps clarify

the set up of the simulations discussed in Section III.

A. Semi-implicit Formulation

In this paper we use a semi-implicit DAE model with

inclusion of discrete events, as follows [11]:

T ẋ = f(x,y,u,η) (1)

Rẋ = g(x,y,u,η)

where f (f : Rn+m+p+q
7→ R

n) are the differential equations;

g (g : R
n+m+p+q

7→ R
m) are the algebraic equations;

x (x ∈ R
n) are the state variables; y (y ∈ R

m) are

the algebraic variables; u (u ∈ R
p) are discrete variables

modeling events, e.g., line outages and faults; η (η ∈ R
q)

are system parameters; and T and R are n × n and m × n

non-diagonal and non-full rank matrices.

As discussed in [11], the semi-implicit formulation (1)

has several formal and numerical advantages with respect

to the standard explicit one. The main feature of the semi-

implicit formulation that is used in this paper is the ability

to seamlessly vary the order of a model by setting to zero

the elements of T and/or R in (1). This features consistently

simplifies the implementation of Monte Carlo analysis aimed

to define the impact of model order approximations discussed

in Subsection III-B.

B. Device Models

To simplify the discussion of the case study, machine and

regulator models considered in this paper are briefly recalled

in this subsection.

1) Synchronous Machine: The synchronous machine model

is assumed to be that discussed in [12]. Differential equations

in semi-implicit form are as follows:

1

Ωn

δ̇ = ω − ω0 (2)

Mω̇ +Dδ̇ = τm − τe(ψd, ψq, id, iq)

T ′

d0ė
′

q + T̃ ′′

d0ψ̇
′′

d = −e′q − (xd − x′d)id + vf

T ′

q0ė
′

d − T̃ ′′

q0ψ̇
′′

q = −e′d + (xq − x′q)iq

T ′′

d0ψ̇
′′

d = −ψ′′

d + e′q − (x′d − xℓ)id

T ′′

q0ψ̇
′′

q = −ψ′′

q − e′d − (x′q − xℓ)iq

where parameters are defined as in [12] and

T̃ ′′

d0 =
(xd − x′d)(x

′

d − x′′d)

(x′d − xℓ)2
T ′′

d0

T̃ ′′

q0 =
(xq − x′q)(x

′

q − x′′q )

(x′q − xℓ)2
T ′′

q0

Note that several models of reduced order can be obtained

based on the 6th order model. For example, to obtain a 4th

order model, it suffices to impose T ′′

d0 = T ′′

q0 = 0. Note also

that to reduce the dynamic order of (2), it is sufficient to set

to zero a time constant on its left-hand side.

2) Automatic Voltage Regulator: The control scheme con-

sidered in this paper is the standard IEEE Type DC1 exciter

with transient feedback described in [13], whose semi-implicit

formulation is as follows:

Tmv̇m = v − vm (3)

Tbv̇b +Kav̇f = Ka(v
ref

− vm)− vb

Tav̇a − Tcv̇b = vb − va

Tf v̇f = Kfve − vf

Tev̇e = va − (Ke + Se(ve))ve

where v is the terminal bus voltage amplitude of the syn-

chronous machine and the ceiling function Se is that defined in

[14]. The amplifier state variable va undergoes an anti-windup

limiter, with limits vmax
a and vmin

a . All other parameters in (3)

are defined in [12].
3) Turbine Governor: The turbine governor scheme consid-

ered in this paper is a standard linear model of steam turbines,

including a servo, a governor and a reheater. The semi-implicit

DAE system that describes this model is as follows:

T1ẋs = porder +
1

R
(ωref

− ω)− xs (4)

T3ẋc − T2ẋs = xs − xc

T5ẋr − T4ẋc = xc − xr

τm = xr

where all parameters are defined in [12]. The servo state

variable xs undergoes a windup limiter, with limits pmax and

pmin.

C. Implicit Time Domain Integration Schemes

In this paper, only implicit time-domain integration schemes

are considered as these are known to be numerically more

stable and accurate than explicit ones, especially for stiff DAEs

[15]–[17]. When using implicit methods, each step of the

numerical integration is obtained as the solution of a set of

nonlinear equations. Assuming that x and y are known at a

generic time t, and given a step length h, the values of x and

y at t + h can be obtained by solving the following general

expression for implicit integration schemes up to the second

order:

0 = T · ξ − βh(f + κf t) (5)

0 = R · ξ − hg

where h is the integration time step, f t is the known vector of

differential equations evaluated at time t, and ξ is a numerical

approximation of the time derivative of state variable that

depends on the scheme, as follows:

ξ = x−

ν∑

ℓ=1

γℓx(t− (ℓ− 1)h) (6)

Table I summarizes the coefficients for the backward Euler

method (BEM), implicit trapezoidal method (ITM), and order-

2 backward differentiation formula (BDF). These methods

are chosen for their different numerical stability properties.

BEM and order 2 BDF are L-stable, where BEM can be, in

occasions, hyperstable, while ITM is A-stable.



TABLE I
COEFFICIENTS OF THE BEM AND ORDER 2 BDF AND ITM

Scheme Order Stability γ1 γ2 β κ
BEM 1 L-stable 1 - 1 0

ITM 2 A-stable 1 - 0.5 1

BDF 2 L-stable 4/3 −1/3 2/3 0
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Fig. 1. Trajectories of the rotor speed of machine 1 and of the voltage
magnitude at bus 14 for the base-case set of device models and parameters,
trapezoidal method and fixed time step h = 0.025 s.

III. CASE STUDY

This case study shows, through a Monte Carlo analysis,

the impact of parameter, model and numerical integration

uncertainty on the transient response of the IEEE 14-bus

system. The model of the IEEE 14-bus system considered

in this section is that described in [12]. If no power system

stabilizer is included, such a system is poorly damped due

to the interaction between the subtransient dynamics of the

synchronous machine connected at bus 1 and its AVR. The

considered contingency is line 2-4 outage occurring at t = 1
s. The trajectories for the base-case scenario are shown in

Fig. 1. To solve the simulation the ITM with h = 0.025 s is

used. As shown in Fig. 1, the system is stable and oscillations

damp after about 30 s.

In the remainder of this section, the following four scenarios

are considered:

• Uniform distribution of device parameter variations.

• Random selection of integration schemes and time steps.

• Random selection of device models.

• The combination of the three scenarios above.
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Fig. 2. Trajectories and statistical properties of the the rotor speed of machine
1 and the voltage magnitude at bus 14 considering the effect of device
parameter uncertainty.

For each scenario, 2000 time domain simulations have been

solved. All simulations are obtained using Dome, a Python-

based power system analysis software tool [18] that allows

solving time domain analysis in parallel by exploiting multi-

core architectures. The Dome version used in this case study is

based on Python 3.4.1, Numpy 1.8.2, CVXOPT 1.1.7, ATLAS

3.10.1 and has been executed on a 64-bit Linux Fedora 21 2
Intel 64-bit 6-core 2.66 GHz Xeon X5650 CPUs, and 64 GB

of RAM. On such a hardware configuration, Dome completes

2000 simulations in the range of 2 to 5 minutes, depending

on simulation settings (e.g., integration time step h).

A. Effect of Parameter Uncertainty

For this scenario, all parameters of all static, i.e., transmis-

sion lines and loads, and dynamic devices, i.e., synchronous

machines and primary regulators, are varied assuming a uni-

form distribution with boundaries ±2.5% around base case

values. Base-case device models and ITM with h = 0.025 s

are used. Results are shown in Fig. 2. The expected trajectories

are similar to those of the base case but slightly better damped,

and the standard deviation decreases as the time increases. This

is an expected result of probabilistic time domain analysis (see

[10] for further details). However, considering the relatively

small variation of the parameters, a fairly high number of

simulations, namely, about 15%, results in a limit cycle.

B. Effect of Model Uncertainty

The effect of uncertainty of dynamic device models on the

dynamic response of the system is considered for this scenario.
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Fig. 3. Trajectories and statistical properties of the trajectories of the rotor
speed of machine 1 considering the effect of different device models.

With this aim, the following parameters are randomly assigned

either their base case value or zero:

• Model (2): T ′

d0, T ′

q0, T ′′

d0, T ′′

q0, T̃ ′′

d0, T̃ ′′

q0, D.

• Model (3): Tm, Ta, Tb, Tc, Tf , Se.

• Model (4): T1, T2, T3, T4, T5.

Figure 3 shows the results obtained for this scenario. The

distribution of the trajectories i such that the standard deviation

is not informative. Moreover, rotor angle trajectories appear

to grouped into two main clusters. A significant percentage

of voltage trajectories, about 50%, deviates from the average

one, especially in the first instants following the line outage.

C. Effect of Numerical Uncertainty

For this scenario a random selection of the three time

integration methods of Table I as well as of the time step h

using a uniform distribution with boundaries [0.01, 0.3] s are

considered. Figure 4 shows that the integration scheme and the

time step have a small impact on the dynamic response of the

system. This result had to be expected due to the robustness

of implicit methods.

D. Effect of Parameter, Model and Numerical Uncertainty

In this scenario all uncertainty sources discussed above are

considered together. Results are shown in Fig. 5. The main

conclusion that can be drawn is that the combined effect of

all uncertainty sources is not the sum of each uncertainty

alone. The high nonlinearity of the power system model leads

to unpredictable trajectories. While the system is apparently

always numerically stable, the deviation with respect to the
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Fig. 4. Trajectories and statistical properties of the rotor speed of machine
1 and the voltage magnitude at bus 14 considering the effect of different
different integration methods and settings.

average trajectory can be consistent and lead to unacceptable

values of the voltage and/or rotor angles. Hence, the system

can be unstable according to the definitions given in [1]. It

is also interesting to note that the occurrence of limit cycles

is unlikely and that the average trajectory does not oscillates,

which can lead to conclude that, on statistical basis, the system

is properly damped.

IV. CONCLUDING REMARKS AND FUTURE WORK

The analysis carried out in the paper allows drawing some

interesting conclusions on the effect of parameter uncertain-

ties, device models, and numerical simulation. The effect of

parameter uncertainty tends to provide uniform and symmet-

rical distribution. The following are relevant remarks:

• System parameter uncertainty can lead to undamped

oscillations although the standard deviation tends to de-

crease in the long term. Note, however, that undamped

oscillations are particularly frequent in the case study as

the base case system is poorly damped.

• Device models have a relevant impact on the initial part

of the transient and lead to clusters of trajectories.

• The parameters of the numerical integration scheme have

a marginal impact on the overall simulation.

• Combining together the effect of all the above, has a

dramatic impact on the dynamic response of the system,

which is characterized by a high standard deviation

during the initial part of the transient, asymmetry of the

distribution of the trajectories; and consistent trajectory
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Fig. 5. Trajectories and statistical properties of the rotor speed of machine 1

and the voltage magnitude at bus 14 considering the effect of device parameter
uncertainty, different device models and different integration methods and
settings.

deviations on a relatively large number of simulations.

Even for a light-weight perturbation as that considered in

the paper, i.e., a line outage, the uncertainty on what is

the expected behavior of the system is surprisingly high.

The observations above suggest to reconsider and, possibly,

redefine the usual interpretation of time domain analysis. The

computational burden of the analysis presented in this paper

makes clearly unfeasible for a practitioner to run similar

analyses for each contingency of a real-world system. It is thus

necessary to define alternative methods to properly estimate

the expected dynamic response of power systems. With this

aim, we consider that the following techniques are promis-

ing candidates: gray-box modelling approach [19]; Bayesian

linear uncertainty analysis [20], and probing techniques for

model order selection [21]. Future work will focus on the

implementation of efficient and accurate methods to define

such estimations for large scale power system models.
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[10] F. Milano and R. Zárate-Miñano, “A systematic method to model

power systems as stochastic differential algebraic equations,” IEEE

Transactions on Power Systems, vol. 28, no. 4, pp. 4537–4544, Nov.
2013.

[11] F. Milano, “Semi-implicit Formulation of Differential-Algebraic Equa-
tions for Transient Stability Analysis,” IEEE Transactions on Power

Systems, 2015, submitted July 2015, revised October 2015, currently
under review.

[12] ——, Power System Modelling and Scripting. London: Springer, 2010.
[13] IEEE Working Group on Computer Modelling of Excitation Systems,

“Excitation System Models for Power System Stability Studies,” IEEE

Transactions on Power Apparatus and Systems, vol. 100, no. 2, pp. 494–
509, Feb. 1981.

[14] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability. Upper
Saddle River, New Jersey: Prentice Hall, 1998.

[15] R. K. Brayton, F. G. Gustavson, and G. D. Hachtel, “A New Efficient
Algorithm for solving Differential-Algebraic Systems using Implicit
Backward Differentitation Formulas,” Proceedings of the IEEE, vol. 60,
no. 1, pp. 98–108, Jan. 1972.

[16] J. Sanchez-Gasca, R. D’Aquila, and W. Price, “Variable Time Step,
Implicit Integration for Extended-term Power System Dynamic Simula-
tion,” in Proc. IEEE Power Industry Computer Application Conf. 1995,
May 1995, pp. 183–189.

[17] C. Fu, J. D. McCalley, and J. Tong, “A Numerical Solver Design for
Extended-Term Time-Domain Simulation,” IEEE Transactions on Power

Systems, vol. 28, no. 4, pp. 4926–4935, Nov 2013.
[18] F. Milano, “A Python-based Software Tool for Power System Analysis,”

in Procs. of the IEEE PES General Meeting, Vancouver, BC, July 2013.
[19] J. N. Nielsen, H. Madsen, and P. C. Young, “Parameter estimation

in stochastic differential equations: An overview,” Annual Reviews in

Control, vol. 24, pp. 83–94, 2000.
[20] J. Cumming and M. Golstein, “Bayes Linear Uncertainty Analysis

for Oil Reservoirs Based on Multiscale Computer Experiments,” in
Handbook of Applied Bayesian Analysis, T. O’Hagan and M. West, Eds.
Oxford: Oxford University Press, to appear.

[21] V. S. Peric, T. Bogodorova, A. N. Mete, and L. Vanfretti, “Model order
selection for probing-based power system mode estimation,” in IEEE

Power and Energy Conference at Illinois (PECI), Feb. 2015, pp. 1–5.


