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Abstract—Accurate and fast-responding Phase-Locked Loops
(PLLs) are crucial for the implementation of primary frequency
controllers of non-synchronous generation and energy storage
devices that are connected to the grid through power electronic
converters. PLLs are primarily designed to synchronize a con-
verter to the grid and their ability to estimate frequency devia-
tions is a design-dependent, not necessarily optimized byproduct.
The goal of the paper is to establish which design better filters
noise and reduces numerical spikes after sudden variations of the
voltage at the terminal ac bus of the converter. To this aim, the
paper compares five well-assessed PLL implementations through a
standard IEEE benchmark system considering both contingencies
and noise.

Keywords—Distributed energy resources, frequency control,
frequency estimation, frequency-locked loop, phase-locked loop.

I. INTRODUCTION

A. Motivation

The utilization of PLL devices is becoming more and more
important as the penetration of power electronic converters in
electric energy systems increases. PLLs primary purpose is to
synchronize the converters to the grid. A byproduct of such
synchronization is that the PLL is able to estimate frequency
deviations, which can be utilized to implement frequency
regulation. However, the primary purpose of the PLL is not
frequency estimation. So far, it has not been fully discussed
which is, among the many possible PLL implementations, the
most adequate PLL design for frequency control. The focus of
this paper is to compare a variety of well-assessed PLL designs
and study their ability to estimate local frequency deviations.

B. Literature Review

The main purpose of the PLL is the synchronization of
power electronic converters to a three-phase ac grid. Since, in
turn, a PLL is a closed-loop controller with inclusion of a filter,
its implementation is not unique. In the literature, the main
focus so far has been to propose and test PLL designs that
properly filter harmonics, compensate unbalanced conditions
and reduce the delay and the error with which the phase is
tracked.

Recent publications have recognized the impact of PLLs in
the regulation provided by non-synchronous devices [1], [2],
but also the potential instabilities that these devices can cause
to electronic converters [3]–[5]. Reference [6] shows how the
delays and fast flux dynamics introduced by PLLs can affect
the ability of non-synchronous devices to properly regulate the

frequency. On the other hand, the noise of frequency signals
can be filtered and is, generally, less harmful [7].

There are several PLL solutions specifically designed
for power electronic converters. The Synchronous Reference
Frame PLL (SRF–PLL) is likely the simplest and the most
commonly utilized scheme [8]. Other configurations are aimed
at improving the SRF–PLL to reduce noise, distortions and
internal parameter uncertainties. Within this category, we cite
the Lag PLL (Lag–PLL) [9]; the Low-Pass Filter PLL (LPF–PLL)
[10]; the Enhanced PLL (E–PLL) [11]; and the Second-order
Generalized Integrator (SOGI) with Frequency-Locked Loop
(FLL) [12]–[14].

A drawback of PLL noise filtering is the introduction of
delays in the estimation of the phase and, consequently, of
frequency deviations. With this regard, alternative solutions
to the PLL for grid synchronization aimed at improving the
compromise between speed and noise filtering have been
proposed in the literature. For example, in [15], the authors
propose an algorithm in the discrete time-domain based on
the well-known Kalman Filter.

Despite some drawbacks, PLLs are the simplest and most
widely-used phasor synchronization devices. For this reason,
we focus exclusively on PLLs and compare a variety of imple-
mentations to define the proper trade-off between accuracy and
responsiveness. With this aim, we need an ideal signal – i.e.,
a signal virtually free of noise and delay – to which compare
the frequency estimation of the PLLs. This signal is based on
the Frequency Divider Formula (FDF), recently proposed by
the authors in [16] and further developed in some following
works [6], [17], [18].

C. Contributions

The contributions of this paper are twofold.

• The models of five common PLL designs suitable for
the conventional transient stability analysis which is
based on quasi-steady state voltage phasors in polar
coordinates.

• A thorough comparison of the dynamic performance
of five different PLL implementations for the estima-
tion of frequency deviations.

The five PLL implementations considered in the paper are:
SRF–PLL, Lag–PLL, LPF–PLL, E–PLL, and SOGI–FLL.
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D. Organization

The remainder of this paper is organized as follows. Section
II describes the basic elements that compose a generic PLL

scheme as well as the five PLL configurations considered in
this work. Section III outlines the FDF proposed in [16] and
that is utilized in this paper to obtain noise-free bus frequency
signals to which the PLLs frequency estimations are compared.
Section IV presents a case study based on the WSCC 9-bus
system and a variety of contingencies and noises that allow
to test the dynamic response of the five PLL implementations
considered in Section II. Finally, Section V draws conclusions
and outlines future work.

II. PHASE-LOCKED LOOP CONFIGURATIONS

The input signals of PLLs for power electronic applications
are the three-phase voltages at the bus where the converter is
connected. These voltages are projected onto the dq reference
frame and the vq(t) component is tracked and minimized. This
ensures that the converter is synchronized with the ac grid
frequency at the point of connection and utilizes vd(t) as phase
reference.
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Fig. 1: Basic scheme of a PLL.

A basic scheme of a PLL is depicted in Fig. 1. This scheme
is composed of three main parts, as follows.

i. The Phase Detector (PD), which measures the vector of
three-phase voltage at the bus of connection, vabc(t).
The voltage is then converted from abc representation
into αβ- and dq-reference frames, and the q-axis
component vq(t) is computed.

ii. The Loop Filter (LF), which takes the error ϵq(t)
between the measured q-axis voltage, vq(t), and the
one estimated by the PLL, v̂q(t). While there exist
several different configurations of the LF, they are
generally based on a perfect tracking controller, e.g.,
a PI.

iii. The Voltage Oscillator Control (VOC), which takes
the bus frequency deviation, ∆ω̂(t) and provides the
estimation of the bus voltage q-axis component v̂q(t).
The VOC typically consists of a pure integrator to
avoid steady-state errors in v̂q(t), and impose that, in
steady-state, vq(t) = 0.

For transient stability studies, such as the one carried out in
this paper, vabc(t) is not available, as the model is based on a
balanced, fundamental frequency and quasi-steady state phasor
representation of network branches and devices. The trans-
formations operated within the PD cannot thus be explicitly
implemented. Depending on the network model, in fact, either
the components vd(t) and vq(t) or the polar representation in
term of voltage magnitude v(t) = |vd(t) + jvq(t)| and phase
angle θ(t) = ∠(vd(t) + jvq(t)) are directly available at the
point of connection of the converter.

In the following, we use exclusively polar coordinates for
bus voltage phasors. This is equivalent to assume that the
output of the PD is the voltage phase angle θ(t). In fact,
vq(t) = v(t) sin(θ(t)), which shows that, in steady-state, the
condition vq(t) = 0 is equivalent to θ(t) = 0.

The signal measurements and transformations performed in
the PD, however, are not instantaneous. For this reason, the PD

is assumed to be a pure delay in the fundamental frequency
model utilized in this paper. Hence, the output of the PD is
vq,τ (t) = vq(t−τ) or, using polar coordinates θτ (t) = θ(t−τ).

The VOC is a pure integrator. For this reason, its input
signal has to be in steady-state the rate of change of the
controlled PLL signal. Since we have shown above that tracking
vq(t) is equivalent to track the phase angle θ(t) of the bus
voltage phasor v̄(t), the input quantity of the VOC is the rate
of change of such angle or, in other words, an estimation of
the frequency deviation ∆ω̂(t) at the bus where the PLL is
connected.

To obtain the actual frequency at the bus, one has to add
to ∆ω̂(t) the fundamental frequency of the system. This is
a constant, say ω0, if synchronous machines rotor speeds are
referred to the synchronous frequency of the system, namely:

δ̇i(t) = Ωb(ωi(t)− ω0) , (1)

where δi(t) and ωi(t) are the rotor angle and angular speed,
respectively, of machine i, and Ωb is the value of synchronous
frequency of the system in rad/s (e.g., 314.15 rad/s in a 50 Hz
grid).

In simulations, referring machine speed deviations to the
frequency of the Centre of Inertia (COI) is also useful to avoid
the drift of machine angles, which leads to time consuming
simulations in long term stability analysis [19]. For these
reasons, the COI is implemented in most commercial software
tools for the dynamic simulation of power systems, e.g.,
Eurostag and PSS/E. If the frequency of the COI is used, then
(1) has to be rewritten as:

δ̇i(t) = Ωb(ωi(t)− ωCOI(t)) , (2)

where

ωCOI(t) =

∑n
i Miωi(t)∑n

i Mi
, (3)

where Mi is the inertia constant of the i-th synchronous
machine. In this paper, (2) is utilized as the rotor angle
equation of synchronous machines and, hence, the frequency
estimated by the PLL is computed as:

ω̂(t) = ωCOI(t) +∆ω̂(t) . (4)

Note that, in standard transient stability models, vq(t) and
the phase angle θ(t) are algebraic variables. Therefore, the
computation of its derivative by the LF is prone to jumps,
spikes and/or numerical issues in the event of discontinuities
such as line outages or faults that may occur in the system. For
this reason the estimation of the frequency deviations through
the PLLs can show numerical issues, which are duly discussed
in the case study.

The remainder of this section provides a brief description
of five typical PLL configurations that are used in transient
stability studies.



A. SRF–PLL

The SRF–PLL is currently one of the simplest and most
commonly used PLLs configurations [8], [18]. A fundamental-
frequency model of a SRF–PLL is depicted in Fig. 2, where
the PD is modeled as a pure delay; the LF is a PI controller;
and the VOC is implemented as an integrator.
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Fig. 2: Scheme of the SRF–PLL.

The interested reader can find in [18] a comprehensive
transient stability study on the performance of a variety of
non-conventional primary frequency control devices in trans-
mission systems when their local input signal is provided by
a SRF–PLL.

B. Lag–PLL

Figure 3 shows a variation of the SRF–PLL presented above.
In this configuration, referred to as Lag–PLL, a low-pass filter
is added in the LF prior to the PI regulator [9]. The aim of the
low-pass filter is to reduce the sensitivity of the PLL to noises
and to prevent numerical issues when computing ∆ω̂(t).
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Fig. 3: Scheme of the Lag–PLL.

C. LPF–PLL

Another possible implementation of the PLL is shown in
Fig. 4, originally proposed in [10] and called LPF–PLL. Despite
its name, the implementation of the LF proposed in [10]
resembles more of a lead-lag block. The purpose of this block
is to filter noises and possible numerical issues that may arise
when computing ∆ω̂(t), while preventing the addition of large
delays in the process.
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Fig. 4: Scheme of the LPF–PLL.

D. E–PLL

Figure 5 shows the single-phase implementation of the
E–PLL that was originally proposed in [11]. The LF is com-
posed of a PI regulator as for the SRF–PLL. The main differ-
ences reside in the PD, as it is implemented as a combination
of the pure delay τ and an Adaptive Notch Filter [20]. The
E–PLL can be designed to be robust against noise, distortions
and uncertainties of internal parameter setting, and to be able
to adaptively follow frequency variations. The main drawback
of the E–PLL is its relative slow response, since the estimation
process takes more than one cycle.
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E. SOGI–FLL

The last PLL configuration discussed in this paper is de-
picted in Fig. 6 [12]. This implementation consistently differs
from the previous PLLs illustrated, as it includes a SOGI, i.e.,
an adaptive filter structure whose input signal is the resonant
frequency ω̃ [13], and a FLL, which adapts ω̃(t) [14]. In [12],
the authors propose a cross-feedback, multiple SOGI–FLL tuned
at different frequencies to estimate the sequence components
of v(t) under severe distortion conditions. In this paper, we
consider the single SOGI-FLL configuration to estimate ω̂(t).

SOGI
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III. FREQUENCY DIVIDER FORMULA

In [16], a new technique to estimate local frequency
variations at every bus of a given network is proposed. This
technique, called Frequency Divider Formula (FDF), relates
such local variations with synchronous machine rotor speeds
and Phasor Measurement Unit (PMU) measurements by means
of the augmented admittance matrix of the system, as formu-
lated below.

∆ωB = −B
−1
BB ·BBG ·∆ωG (5)



where ∆ωB are the bus frequency deviations; ∆ωG are the
synchronous machine rotor speed deviations; BBB is the
extended network susceptance matrix with inclusion of the
internal reactances of the synchronous machines; and BBG

is incidence susceptance matrix at the bus where generators
are connected to the network.

For computational efficiency purposes, it is advisable to
formulate (5) as an acausal expression, as follows:

0 = BBB ·∆ωB +BBG ·∆ωG (6)

The main advantage of the above formulation is that it does
not require computing B

−1
BB . While BBB is typically highly

sparse, in fact, its inverse in an almost fully dense matrix.
This is particularly relevant when large systems are considered.
Moreover, the frequency estimation provided by (6) is free of
numerical issues such as the spikes after discontinuous events
that characterize the frequency signals provided by PLLs and
PMUs.

The expressions in (5) and (6) are certainly accurate for
standard transient stability models and simulations, as thor-
oughly discussed in [16]–[18]. A validation of the FDF consid-
ering Electromagnetic Transient (EMT) models and hardware-
in-the-loop PMU devices is presented in [21], [22]. Experi-
mental results confirm that the set of hypothesis and simplifi-
cations, the most relevant of which is that fast electromagnetic
dynamics are neglected, that lead to the definition of (6) are
consistent and do not lead to any significant error.

IV. CASE STUDY

This section compares the performance of the five PLL con-
figurations discussed in this paper, and benchmarked against
the ideal frequency estimation of the FDF. The well-known
WSCC 9-bus system is considered for simulations. The system
includes three synchronous machines, loads and transformers,
and six transmission lines, as well as primary frequency
and voltage regulation and an Automatic Generation Control
(AGC). Figure 7 shows the scheme of the 9-bus system. All
static and dynamic data can be found in [23].
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Fig. 7: WSCC 9-bus test system.

The case study considers two scenarios. In Subsec-
tion IV-A, a three-phase fault is simulated to study the accuracy
of each PLL configuration following large and fast frequency
variations. Then, Subsection IV-B discusses the sensitivity of
the PLLs to noise in their input signal, i.e., in the bus voltage
angles.

All simulations and plots presented in this section were
obtained using the software tool DOME [24] running on a 4
core 2.60 GHz Intel c⃝ Core i7TM with 8 GB of RAM.

A. Three-phase Fault

In this subsection, a three-phase fault is simulated at t =
0.5 s at bus 7. The fault is cleared 80 ms after its occurrence
by opening the line connecting buses 7 and 5. The step of the
time integration process is 1 ms, and every step is solved by
using the dishonest Newton-Raphson method [25]. Finally, the
integration method used is the implicit trapezoidal formula.

The parameters of the PLL schemes depicted in Figs. 2–
6 are listed in Table I. Such parameters have been tuned by
means of trial-and-error techniques in order to obtain the best
performance for each configuration. The time delay τ is zero
for all configurations.

TABLE I: Values of the parameters of the PLL controllers.

PLL Parameter Value Unit

SRF–PLL
Kp 0.1 –

Ki 0.05 –

LPF–PLL

KL 1.0 –

T1 0.5 s

T2 0.01 s

Kv 1.0 –

E–PLL

KE 30.0 –

Kp 0.30 –

Ki 0.1 –

Lag–PLL

Tf 0.01 s

Kp 0.5 –

Ki 0.1 –

SOGI–FLL
KS 2.0 –

γS 0.5 –

The frequency at the load bus 8 is estimated by each of the
PLL configurations discussed in the paper, and compared to the
estimation provided by the FDF, and the trajectories are shown
in Figs. 8 (SRF–PLL, LPF–PLL and E–PLL) and 9 (Lag–PLL

and SOGI–FLL). Additionally, the absolute estimation errors ϵω
between each PLL estimation and the FDF signal are depicted
in Fig. 10.

The most accurate frequency estimations are achieved
with the LPF–PLL and the Lag–PLL, showing the latter the
highest spikes of the two at the fault occurrence and the line
opening. The SRF–PLL shows the lowest spikes during the two
discontinuous events, but it also shows high ϵω . Finally, the
E–PLL and the SOGI–FLL show the worst performance overall,
since their signals have the highest spikes (1.025 and 1.17,
respectively), and ϵω during the first swings.

B. Noise

PLLs are known to be sensitive to the noise of the measured
signal, i.e., the bus voltage angle. While the level of noise
in transmission systems is generally small, this noise is of
higher relevance in distribution systems due to the proximity
of loads, unbalances, harmonics of power electronic converters,
etc. This subsection considers a scenario where noise is applied
to all bus voltage angles of the 9-bus system. Such a noise
is modeled as a Ornstein-Uhlenbeck’s process with Gaussian
distribution [26].

The frequency at the load bus 8 is estimated by means
of each PLL configuration, and the trajectories are shown in
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the E–PLL during a three-phase fault.
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Fig. 9: Frequency of bus 8 estimated with the FDF, Lag–PLL and the SOGI–FLL

during a three-phase fault.

Fig. 11, whereas the absolute frequency errors ϵω are depicted
in Fig. 12. Note that, for the short time simulated, the noise
does not have impact on the synchronous machine rotor speeds,
and thus the frequency estimated by the FDF used to compute
ϵω is equal to 1 pu. The parameters of the different PLLs
utilized to obtained the plots in Figs. 2–6 are the same as
those listed in Table I.

The LPF–PLL is the least sensitive to the noise applied to
the bus voltage angles, followed by the SRF–PLL. The Lag–PLL

shows a smooth estimation, but the latency inserted by its low-
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Fig. 11: Frequency estimated at bus 8 under the presence of noise in the PLLs
input signal.

pass filter block leads to greater ϵω . Finally, the E–PLL and the
SOGI–FLL are the most sensitive to jitter, showing the latter the
worst performance overall.

V. CONCLUSIONS

The paper compares the accuracy and the sensitivity to
noises present in the input signal of five PLL configurations
used for frequency estimation, namely the SRF–PLL, LPF–PLL,
Lag–PLL, E–PLL and the SOGI–FLL. The comparison is based
on simulations performed considering several scenarios, large
disturbances and relatively high levels of noise on the well-
known WSCC 9-bus, 3-machine test system. Simulation results
allow concluding that the LPF–PLL has the best performance
overall, as it provides the most accurate frequency estimation
after fast and large frequency variations caused by contingen-
cies such as faults and line outages, and it also shows the least
sensitivity to noise present in the bus voltage angles. An overall
good performance is also achieved by the commonly-used
SRF–PLL and the Lag–PLL. Finally, the worst accuracy, and the
highest sensitivity to noise are observed from the E–PLL, and to
a greater extent, from the SOGI–FLL. Future work will focus on
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Fig. 12: Absolute error of the frequency estimated at bus 8 under the presence
of noise in the PLLs input signal.

the comparison of the LPF–PLL with other grid synchronization
solutions such as the one proposed in [15]. The technique
discussed in [5] to evaluate the impact of harmonics on the
estimation of the fundamental frequency deviations of PLLs
will be also considered.
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[3] Ö. Göksu, R. Teodorescu, C. L. Bak, F. Iov, and P. C. Kjr, “Instability of
Wind Turbine Converters During Current Injection to Low Voltage Grid
Faults and PLL Frequency Based Stability Solution,” IEEE Transactions
on Power Systems, vol. 29, no. 4, pp. 1683–1691, July 2014.

[4] P. Zhou, X. Yuan, J. Hu, and Y. Huang, “Stability of DC-link voltage
as affected by phase locked loop in VSC when attached to weak grid,”
in Proceedings of the IEEE PES General Meeting. IEEE, 2014, pp.
1–5.

[5] F. Bizzarri, A. Brambilla, and F. Milano, “Analytic and Numerical Study
of TCSC Devices: Unveiling the Crucial Role of Phase-Locked Loops,”
IEEE Transactions on Circuits and Systems - I: Regular Papers, vol. PP,
no. 99, pp. 1–10, 2017.
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