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Abstract—This paper applies the Filippov theory of differ-
ential equations with discontinuous right-hand side to model
anti-windup PI controllers. The proposed approach solves the
deadlock issue that arises in the PI control model recommended
by the IEEE Standard 421.5-2016. An illustrative example as well

as a case study based on a one-machine infinite-bus network show
how the proposed approach works and discusses the effects of the
proposed approach on the transient response of power systems.

Index Terms—PI control, deadlock, anti-windup, Filippov the-
ory, sliding surface.

I. INTRODUCTION

A. Motivation

Proportional Integral (PI) controllers are commonly em-

ployed in power system applications [1]. The IEEE Standard

421.5-2016 is the recommended model. It proposes an anti-

windup (AW) or non-windup PI control [2] model for dynamic

analysis of power systems. The differential equation of this

model is discontinuous. Due to discontinuity, simulations with

the IEEE model can lead to failure of a numerical method

or trajectory deadlock known as chattering Zeno [3]. This

work applies Filippov theory (FT) to develop a method for

the continuation of trajectories beyond such a deadlock point.

B. Literature Review

Integral windup phenomenon of PI controllers leads to

excess energy to be dissipated in the system, which in turn

results in a poor controller performance [4]. Thus AW control

structures are often used and several solutions are proposed

[5], [6]. Among all possible AW implementations, the def-

inition of the IEEE Standard 421.5-2016 is a conditional

integration type [2]. This IEEE AW model poses several

challenges for both software implementation and numerical

integration and one such issue is the deadlock.

The deadlock behavior that prevents the continuation of

trajectories is discussed in [3] and [7] for PI controllers

in wind turbines. To prevent such deadlock two approaches

are proposed in [3], [7]: using an extra feedback loop and

employing a deadband or hysteresis. The feedback solution

has two disadvantages: it requires one extra parameter to be

tuned and, depending on the disturbance, it can result in

This work is supported by Science Foundation Ireland, by funding Mo-
hammed Ahsan Adib Murad and Federico Milano, under Investigator Pro-
gramme Grant No. SFI/15/IA/3074.

a significantly different dynamic behavior compared to the

IEEE AW model as discussed in [1]. The application of the

deadband approach introduces chattering of the solution on

the discontinuous surface.

The breakdown of numerical integration techniques related

to the IEEE AW model at the deadlock point is identified due

to discretization in [8]. To alleviate this problem an auxiliary

discrete variable based on the semi-implicit approach [9] is

proposed in [8]. However, such semi-implicit formulation

cannot be adopted by most power system simulation tools.

Another technique considered in [8] is to employ a limited

integrator. But this may result in a delayed response compared

to the IEEE AW method. All the proposed methods mentioned

above to overcome difficulties associated with the IEEE AW

are based on ad hoc approaches. This work proposes a

continuation technique based on FT [10].

Due to the conditions that dictate the non-smoothness of

the IEEE AW model, the solution can enter into a constrained

subset of the state space, typically known as sliding [11]. The

formalism introduced by Filippov in [10] is a powerful tool

to define a vector field on the sliding surface and to handle

discontinuities. This has been applied in other fields, e.g., in

power electronics [12]; and energy harvesters [13]. However,

attempts to apply the FT to power system dynamic analysis

have not been conducted thus far.

C. Contributions

The main contributions of the paper are as follows:

‚ The application of FT to the IEEE type AW PI control

that leads to smooth continuation of trajectories.

‚ A comparison of the proposed approach with the ap-

proaches discussed in [3] and [8].

D. Organization

The remainder of this paper is organized as follows. Section

II presents the IEEE Standard 421.5-2016 AW PI model

along with the numerical issues associated with it. Section

III introduces FT and explains its solution concept. A simple

example of an AW PI controller with a time dependent input

and a Single Machine Infinite Bus (SMIB) power system

network are simulated by applying FT and compared with

two existing solutions in Section IV. Finally, in Section V,

conclusions and future work directions are drawn.



II. PROBLEM FORMULATION

This section first presents the IEEE standard AW PI con-

troller model and then illustrates the trajectory deadlock prob-

lem by introducing a relevant example.

A. Anti-windup PI control

The conditional integration AW method switches off the

integration to avoid windup effects depending on certain

conditions and there exists several implementations [5]. The

IEEE standard proposes one of such AW method, depicted in

Fig. 1. Mathematically, the model is [2]:

If y ě wmax : w “ wmax and 9x “ 0 ,

If y ď wmin : w “ wmin and 9x “ 0 ,

Otherwise : w “ y “ kpu ` x and 9x “ kiu .

(1)
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Fig. 1: Proportional-integral block with an anti-windup limiter in accordance with the
IEEE Standard 421.5-2016 [2].

B. Numerical Issues of the IEEE Standard 421.5-2016

We use a simple example to explain the deadlock phe-

nomenon that can occur when using the IEEE standard model.

Let the following signal be the input signal to the PI controller:

if t ă 3 then: 9u “ 1

else: 9u “ ´1 ,
(2)

and the parameters considered are, ki “ 3, kp “ 1, wmax “
1.2, wmin “ ´1.2 and the initial values at t “ 0 are x0 “ 0.5,

and u0 “ 0. The system is simulated for 6.5 s with a time

step 0.001 s.

Simulation results are shown in Fig. 2. The input u increases

in the first 3 seconds of the simulation, hence y and w

increase. For y ą wmax “ 1.2, at t “ 0.427 s w becomes

constant and 9x switches to 0. So, the integrator is locked to

prevent windup. For t ą 3 s, u and y starts to decrease. At

t “ 5.573 s, y ă 1.2 and the right-hand side of 9x unlocks.

However, at the same time, u ą 0 and, hence, 9x ą 0. Then

x will increase, thus causing y to increase again towards

wmax. Depending on the time step of the integration and

on the value of 9x and on the rate of change of the input

u, a deadlock (cycling) situation can arise which consists

in locking and unlocking the state variable x preventing the

numerical integration from converging. Reducing the time step

of the integration scheme does not solve this issue because of

chattering at that discontinuous point. At this point, some kind

of continuation process in necessary.

Using the deadband (db) based solution method with db =

0.003, the deadlock does not appear in the trajectory shown in
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Fig. 2: An example to explain the deadlock phenomenon that occurs with the IEEE
Standard 421.5-2016 anti-windup PI control model.

Fig. 2. The db is implemented as in [3]. The trajectory obtained

with the db model chatters between the bounds generated by

the deadband and a reasonable value for db cannot be known

as a priori.

III. FILIPPOV THEORY

Filippov systems form a subclass of discontinuous dynam-

ical systems which can be described by a set of first-order

ordinary differential equations (ODEs) with a discontinuous

right-hand side [10]. Consider the following switched dynam-

ical system:

9x “ fpxq “

#

f1pxq when hpxq ă 0

f2pxq when hpxq ą 0
(3)

where, the event function h : Rn Ñ R and an initial condition

xpt0q “ x0 are known.

The state space R
n is split into two regions R1 and R2

separated by a hyper-surface Σ where R1, R2 and Σ are

characterized as,

R1 “ tx P R
n | hpxq ă 0u,

R2 “ tx P R
n | hpxq ą 0u,

Σ “ tx P R
n | hpxq “ 0u,

(4)

such that Rn “ R1 Y Σ Y R2, assuming that the gradient of

h at x P Σ never vanishes, hxpxq ‰ 0 for all x P Σ.



The vector field on Σ is defined by Filippov continuation

approach, known as Filippov convex method [10]. This method

states that the vector field on the surface of discontinuity is a

convex combination of the two vector fields in the different

regions of the state-space:

9x “ fpxq “

$

’

&

’

%

f1pxq, x P R1

cotf1pxq, f2pxqu, x P Σ

f2pxq, x P R2

(5)

where, copf1, f2q is the minimal closed convex set containing

f1 and f2, i.e.

cotf1, f2u “ tfF : x P R
n Ñ R

n : fF “ p1 ´ αqf1 ` αf2u,
(6)

where α P r0, 1s.
Definition 1: An absolutely continuous function x : r0, τ s Ñ
R

n is said to be a solution of (3) in the sense of Filippov, if

for almost all t P r0, τ s it holds that

9x P F pxptqq

where F pxptqq is close convex hull in (6).

Now, the question is what happens when the trajectory of

9x “ f1pxq, with xp0q “ x0 reaches at Σ in finite time. The

possibilities are: (a) transversal crossing, (b) attractive sliding

or repulsive sliding and (c) smooth exit. Filippov formulated a

first order theory to decide what to do in such kind of situation,

summarized in the following.

A. Filippov First Order Theory

Filippov first order theory defines the vector field if the

solution approaches the discontinuous surface. Let x P Σ and

npxq is the unit normal to Σ at x i.e. npxq “ hxpxq
‖hxpxq‖ where,

hxpxq “ ∇hpxq and ∇ “ B
Bx ; the components of f1pxq

and f2pxq onto the normal to the Σ are nT pxqf1pxq and

nT pxqf2pxq respectively.

1) Transversal Crossing: If at x P Σ,

pnT pxqf1pxqq.pnT pxqf2pxqq ą 0, (7)

the trajectory leaves Σ, and two cases are possible. The system

will move to R2 with f “ f2, if nT pxqf1pxq ą 0 or it will

enter to R1 with f “ f1, if nT pxqf1pxq ă 0.

2) Sliding mode: Sliding occurs, at x P Σ if,

pnT pxqf1pxqq.pnT pxqf2pxqq ă 0 . (8)

The sliding mode can be an attracting or a repulsive one. An

attracting sliding mode will occur if,

pnT pxqf1pxqq ą 0 and pnT pxqf2pxqq ă 0, x P Σ. (9)

Repulsive sliding falls outside the scope of this work. Inter-

ested readers are pointed to [10] for further details of this form

of sliding. While sliding along Σ, time derivative fF is given

by:

fF pxq “ p1 ´ αpxqqf1pxq ` αpxqf2pxq, (10)

where, αpxq is given by [proof, see [10]]:

αpxq “
nT pxqf1pxq

nT pxqpf1pxq ´ f2pxqq
¨ (11)

The sliding mode continues until one of the vector fields

starts to point away. When this happens, the solution can be

continued above or below the sliding surface. The exit point is

calculated numerically by finding either the root αpxq “ 0 or

αpxq “ 1 as appropriate. The following remarks are relevant:

‚ If fF pxq ‰ f1pxq, fF pxq ‰ f2pxq such a solution is

often called a sliding motion.

‚ A solution having an attractive sliding mode exists and

is unique, in forward time.

‚ If at the point of discontinuity, condition (8) becomes

ď 0 and f1pxq ‰ f2pxq then a continuous vector-

valued function fF pxq is given which determines the

velocity of motion 9x “ fF pxq along the discontinuity

line. If nT pxqf1pxq “ 0 then fF pxq “ f1pxq; if

nT pxqf2pxq “ 0 then fF pxq “ f2pxq.

IV. CASE STUDY

In order to demonstrate the application of Filippov theory on

IEEE AW PI controller two case studies are considered. The

first case study re-calls the example from Section II-B and

the second one considers an SMIB power system network.

The algorithm described in [14] is applied for numerical

simulation.

A. Case Study I

Consider the example discussed in Section II-B with the

same input and parameters. The mathematical model for upper

limit becomes:

9x “ fpxq “

$

’

’

’

’

&

’

’

’

’

%

f1pxq “ fns “

«

9u

kix1

ff

when hpxq ă 0

f2pxq “ fs “

«

9u

0

ff

when hpxq ą 0,

where fns and fs are the differential equations when the con-

troller is not saturated and saturated, respectively and u varies

according to (2). The controller output signal y “ kpx1 ` x2.

The switching manifold is given by: hpxq “ y ´ 1.2. So,

hxpxq “ r Bhpxq
Bx1

Bhpxq
Bx2

sT “ rkp 1sT , and the normal to the

switching surface is: nT pxq “ rkp 1s.
The simulation results are shown in Fig. 3 and how FT is

applied at each discontinuous point described below.

‚ t “ 0 (s): With initial conditions r0; 0.5s, hpxq ă 0,

thus the system starts in the non-saturated region and is

modeled with f “ fns.

‚ t “ 0.4268 (s): The system has struck the switching

manifold i.e. hpxq “ 0 with u “ 0.4268. At the switching

surface, calculating,

nT pxqf1pxq “ r1 1s

„

1

3p0.4268q



“ 2.2804

nT pxqf2pxq “ r1 1s

„

1

0



“ 1
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Fig. 3: Response of trajectories using Filippov theory.

The system undergoes a transversal intersection since

rnT pxqf1pxqs.rnT pxqf2pxqs “ 2.2804 ą 0. Since

nT pxqf1pxq ą 0, the system moves region with f “ fs.

‚ t “ 3 (s): a time dependent switching occurs, exactly at

that moment for 9u “ ´1, and hpxq ą 0 so, the system

continues with f “ fs. For values of t greater than 3,

the input signal now starts to decrease.

‚ t “ 5.5728 (s): The system has again struck the switching

manifold with u “ 0.4268. At this point, calculating,

nT pxqf1pxq “ r1 1s

„

´1

3p0.4268q



“ 0.2804

nT pxqf2pxq “ r1 1s

„

´1

0



“ ´1 .

rnT pxqf1pxqs.rnT pxqf2pxqs “ ´0.2804 ă 0 and

according to (9), the system slides along Σ. Next, the

sliding vector field on Σ is calculated using (10,11):

αpxq “
nT pxqf1pxq

nT pxqpf1pxq ´ f2pxqq
“

3u ´ 1

3u

fF pxq “ p1 ´ αpxqqf1pxq ` αpxqf2pxq

“

„

x1

x2



“

„

´1

1



.

‚ t “ 5.6663 (s): At this point, αpxq “ 0 for u “ 1

3
and

the trajectory leaves Σ with vector field fns.

1) Comparison of Solutions: This section compares the

Filippov solution approach with the db solution method and

the limited integration technique (LIT). The limited integrator

[8] model is as follows:

If y ě wmax : w “ wmax ,

If y ď wmin : w “ wmin ,

Otherwise : w “ y “ kpu ` x ,

(12)

If x ě xmax and 9x ě 0 : x “ xmax and 9x “ 0 ,

If x ď xmin and 9x ď 0 : x “ xmin and 9x “ 0 ,

Otherwise : 9x “ kiu .

(13)
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Fig. 4: Comparision of trajectories using Filippov theory (FT), deadband approach (S1)
and limited integrator technique (S2).
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Fig. 6: Block diagram of AVR and PSS.

The db value used is 0.003 and the integrator is limited ˘1.1

for LIT. The simulation results are shown in Fig. 4. Using FT

and LIT the trajectory continues smoothly before and after

each event; the db approach will always results in chattering

whenever a deadlock condition appears.

On the other hand, LIT does not show the deadlock and

provides some flexibility to choose the integrator limits inde-

pendently. However, correct values for limits of the integrator

state are often unknown and a common choice is to use the

same values as the output limit. Therefore, in most of the

situations using LIT compared to FT and db, will result in

a different convergence rate to steady state after the output

leaves the limit.

B. Case Study II

Consider the SMIB system shown in Fig. 5, the generator

is equipped with an Automatic Voltage Regulator (AVR) and

a Power System Stabilizer (PSS) as depicted in Fig. 6. The

generator model is a third order type; the PSS consists of

a stabilizer gain and a lead lag block and the AVR is an

static type with PI control [15]. The dynamics of the system is

described by a set of differential-algebraic equations (DAEs)



in the following form [15],

9x “ fpx, yq ,

0 “ gpx, yq ,
(14)

where x and y are the vector of state and algebraic variables

respectively.

For this test system, x “ rδ ω e1
q va xi s1sT , y “

rv1 v3 θ1 θ3 vf c1 c2 c3sT , where δ, ω, e1
q are the rotor

angle, rotor speed and q-axis transient voltage respectively;

va, xi and s1 are the state variables of AVR and PSS; v1, v3,

θ1, θ3 are the bus voltages and angles respectively; vf is the

generator field voltage; c1, c2, c3 are the algebraic variables

of PSS.

The algebraic equations of the SMIB system are given by,

0 “ ´pe ` b13v1v3sinpθ1 ´ θ3q ,

0 “ b13v3v1sinpθ3 ´ θ1q ` b23v3sinpθ3q ` pl ,

0 “ ´qe ` b13rv2
1

´ v1v3cospθ1 ´ θ3qs ,

0 “ b13rv2
3

´ v3v1cospθ3 ´ θ1qs ` b23rv2
3

´ v3cospθ3qs ` ql ,

0 “ ´vf ` kpva ` xi ,

0 “ c1 ´ uinks ,

0 “ c2 ´ c1p1 ´
T1

T2

q ,

0 “ c3 ´ c1p
T1

T2

q ´ s1 ,

where b13 “ 1{x13 and b23 “ 1{x23 are known line

parameters; kp, ks, T1 and T2 are the control parameters of

AVR and PSS; input to the PSS is uin “ ω; pl “ pl0p v3
v30

q,

ql “ ql0p v3
v30

q2, v30 is known from power flow calculation;

pl0 and ql0 are the active and reactive power of the load

respectively; the reactive and active power of the generator

are: qe “ ´ 1

x1

d

rv2
1

´ e1
qv1cospθ1 ´ δ1qs, pe “

e1

qv1

x1

d

sinpδ ´ θ1q

respectively. Note that, the voltage and angle of the infinite

bus are v20 “ 1 and θ20 “ 0 respectively.

The PI controller in AVR (see Fig. 6) is an IEEE Standard

421.5-2016 type. Lets consider the switching manifold for an

upper limit, hpxq “ kpva ` xi ´ vmax. When hpxq ă 0, the

differential equations of the SMIB system are given by ,

9δ “ ω (15)

9ω “
1

M
ppm ´ pe ´ Dωq (16)

9e1
q “

1

T 1
d0

pvf ´
xd

x1
d

e1
q `

xd ´ x1
d

x1
d

v1cospδ ´ θ1qq (17)

9va “ pkapvref ` c3 ´ v1q ´ vaq{Ta (18)

9xi “ kiva (19)

9s1 “
1

T2

pc2 ´ s1q , (20)

where xd, x1
d are the d-axis synchronous and transient reac-

tance respectively; T 1
d0, M , D and pm are the d-axis open

circuit transient time constant, the mechanical starting time,

the damping coefficient and the mechanical power input to

the generator respectively; vref is the reference voltage; Ta, ki
and ka are the control parameters of AVR and PSS.

TABLE I
PARAMETERS OF THE COMPONENTS OF THE SMIB NETWORK

Name Values

Generator M “ 8, D “ 0, x1

d
“ 0.25, xd “ 1, pm “ 1, T 1

d0
“ 6

Line x13 “ 0.3, x23 “ 0.5

Load pl0 “ 0.7, ql0 “ 0.01

AVR ka “ 2, Ta “ 0.005, kp “ 5.5, ki “ 35, vmax
“ 1.58,

vmin
“ ´1.5, vref

“ 1

PSS ks “ 1.5, T1 “ 0.23, T2 “ 0.12
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Fig. 7: Response of the state and field voltage using Filippov theory.

When hpxq ą 0 i.e. the field voltage reaches to its upper

limit (vmax) then (17) and (19) will be switched and all other

states will remain same, as follows:

9e1
q “

1

T 1
d0

pvmax ´
xd

x1
d

e1
q `

xd ´ x1
d

x1
d

v1cospδ ´ θ1qq (21)

9xi “ 0 (22)

We consider f1px, yq is (15)-(20) and f2px, yq is (15),

(16), (21), (18), (22) and (20). Calculating, hxpxq “

r Bhpxq
Bx1

Bhpxq
Bx2

...
Bhpxq

Bx6

sT “ r0 0 0 kp 1 0sT , and the normal

to the switching surface is: nT pxq “ r0 0 0 kp 1 0s.
The initial values of the state variables and algebraic

variables are calculated from the power flow solution and are:

x0 “ rδ0 ω0 e1
q0 va0 xi0 s10sT “ r0.702 0 1.10 0 1.478 0sT ,

y0 “ rv10 v30 θ10 θ30 vf0 c10 c20 c30sT “
r1 0.962 0.473 0.156 1.478 0 0 0sT . All the parameters of

different components of the SMIB system are given in Table I.

1) Simulation Results: The SMIB test system is simulated

by applying a step increase to load (pl0 “ 0.701, ql0 “ 0.015)

and voltage reference set-point of AVR (vref “ 1.01) at

5 s. The response of the PI controller state, field voltage

and limited field voltage (v˚
f ) using FT are shown in Fig.

7. To explain how FT is applied during each event, hpxq;

r1 “ nT pxqf1px, yq and r2 “ nT pxqf2px, yq are shown

in Fig. 8. Simulation results clearly show that a piece-wise

smooth solution is achieved using Filippov solution technique.

Relevant remarks on the simulation results are given below:

‚ For the initial operating point of the system hpxq ă 0,

so the system simulation starts with f1px, yq.
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Fig. 8: Response of the switching manifold hpxq, r1 “ nT pxqf1px,yq and r2 “
nT pxqf2px,yq using Filippov theory.

‚ At 5 s the disturbance is applied and a little bit after that

the system reaches to the switching manifold i.e. hpxq “
0. Due to the condition (7) and r1 ą 0 (see Fig. 8) a

transversal crossing is happened. The system switches to

f2px, yq and the integrator state and the field voltage

become constant (see Fig. 7). The system continues with

f2px, yq as long as hpxq ą 0.

‚ At t “ 5.153 s, hpxq “ 0 again (see the arrow in

Fig. 8) and the conditions (8) and (9) are met, so an

attracting sliding mode occurs on hpxq “ 0. The vector

field (fF px, yq) and αpx,yq are calculated numerically

using (10) and (11). Therefore during that sliding hpxq
remains at 0, the system continues with fF px,yq (see

Figs. 7-8).

‚ The system moves to f1px, yq when hpxq ă 0.

The theory of Filippov assumes systems are modeled using

ODEs. However in this work, our system model employs

DAEs to simulate power systems. The application of FT was

possible due to the fact that hpxq depended only on the state

variables and not the algebraic ones. In addition, the case

studies shows the effectiveness of FT for upper limit of the

IEEE AW PI controller but it is trivial to apply for lower limit

too. For completeness Fig. 9 compares the db and LIT with

the FT (only the integrator state is shown).

V. CONCLUSIONS

This paper studies the trajectory deadlock issue of the

IEEE Standard 421.5-2016 AW PI controller model. To solve

this deadlock problem Filippov theory is proposed. The case

studies prove that an effective trajectory continuation can be

achieved using convex combination defined by Filippov. Other

alternative solution techniques were also compared with the

FT.

We are currently actively working on implementing a sys-

tematic formulation of the FT in a software tool for power

system analysis. We believe that the results of this paper are

promising. However there is still much research to do to make

FT suitable for commercial grade software tools. In particular,
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Fig. 9: Comparision of trajectories using Filippov theory (FT), deadband approach (S1)
and limited integrator technique (S2).

we aim at studying how to apply FT to systems where hpx, yq
depends on both state and algebraic variables.
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[4] K. J. Åström and T. Hägglund, Advanced PID Control. ISA - The
Instrumentation, Systems and Automation Society, 2006.

[5] A. Visioli, “Modified anti-windup scheme for PID controllers,” IEE

Proceedings - Control Theory and Applications, vol. 150, no. 1, pp.
49–54, Jan 2003.

[6] S. Tarbouriech and M. Turner, “Anti-windup design: an overview of
some recent advances and open problems,” IET Control Theory Appli-

cations, vol. 3, no. 1, pp. 1–19, January 2009.
[7] I. A. Hiskens, “Trajectory deadlock in power system models,” in 2011

IEEE International Symposium of Circuits and Systems (ISCAS), May
2011, pp. 2721–2724.

[8] D. Fabozzi, S. Weigel, B. Weise, and F. Villella, “Semi-implicit for-
mulation of proportional-integral controller block with non-windup
limiter according to IEEE Standard 421.5-2016,” in Bulk Power Systems

Dynamics and Control Symposium (IREP), 2017, pp. 1–7.
[9] F. Milano, “Semi-implicit formulation of differential-algebraic equations

for transient stability analysis,” IEEE Transactions on Power Systems,
vol. 31, no. 6, pp. 4534–4543, Nov 2016.

[10] A. F. Filippov, Differential Equations with Discontinuous Righthand

Sides. Kluwer Academic Publishers, 1988.
[11] M. di Bernardo, P. Kowalczyk, and A. Nordmark, “Bifurcations of

dynamical systems with sliding: derivation of normal-form mappings,”
Physica D: Nonlinear Phenomena, vol. 170, no. 3, pp. 175 – 205, 2002.

[12] D. Giaouris, S. Banerjee, B. Zahawi, and V. Pickert, “Stability analysis of
the continuous-conduction-mode buck converter via Filippov’s method,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55,
no. 4, pp. 1084–1096, May 2008.

[13] P. Harte, E. Blokhina, O. Feely, D. Fournier-Prunaret, and D. Galayko,
“Electrostatic vibration energy harvesters with linear and nonlinear
resonators,” International Journal of Bifurcation and Chaos, vol. 24,
no. 11, p. 1430030, 2014.

[14] P. T. Piiroinen and Y. A. Kuznetsov, “An event-driven method to simulate
Filippov systems with accurate computing of sliding motions,” ACM

Trans. Math. Softw., vol. 34, no. 3, pp. 13:1–13:24, May 2008.
[15] F. Milano, Power System Modelling and Scripting, ser. Power Systems.

Springer Berlin Heidelberg, 2010.


	Introduction
	Motivation
	Literature Review
	Contributions
	Organization

	Problem Formulation
	Anti-windup PI control
	Numerical Issues of the IEEE Standard 421.5-2016

	Filippov Theory
	Filippov First Order Theory
	Transversal Crossing
	Sliding mode


	Case Study
	Case Study I
	Comparison of Solutions

	Case Study II
	Simulation Results


	Conclusions
	References

