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Abstract: Voltage instability as a non linear dynamic phenomenon is
here investigated, by introducing a dynamic load flow (LF) Jacobian
matrix as a specific index to assess the non existence of a stable new
equilibrium point in response to perturbations. Reference is made to
the Lyapounov exponent and bifurcation theories to provide
extension of steady-state based indices for voltage stability, this time
taking care of system differential equations, to a continuous
monitoring of system distance from collapse during transients caused
by step perturbations. Theoretical results are validated on the IEEE
30-node test network, accounting for the effect of typically
committed components and regulation loops, such as synchronous
generators, and voltage dependent loads under load tap changing
transformers. Comparison with traditional modal analysis is also
provided for sake of completeness.
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bifurcation theory, Jacobian matrices, load flow analysis.

I. INTRODUCTION

The dynamic phenomena causing voltage instability,
occurring in electric power systems subjected to strong load
demands, lead to a progressive decreasing of the voltage
magnitude at one or more buses, resulting sometimes in
network islanding, thus leading to local or global blackouts.

In Italy, even if dramatic events have not occurred yet,
there is a growing concern about voltage instability risks
especially during early summer periods, when large reactive
power consumption due to air conditioning devices drives the
EHV system towards low voltage profiles.

Since environmental and economic constraints limit the
construction of new generation and transmission systems, and
power demands are predicted to increase, the voltage
instability problem appears to be more and more topical.

In addition to these facts, advanced power system remedial
controls are of growing intent to assist on-line application of
corrective remedial action to counteract severe system
contingencies.

Until now corrective measures have involved almost
exclusively interruptions by event driven protection devices
whereas is well recognised the helpfulness of continuous
monitoring and adoption of optimised control systems. This
kind of control can be fruitful based on selective on-line
indices, and this paper proposes an index evaluation approach
to voltage instability capturing.

The typical slowness of the voltage instability processes
suggests treating the problem as a steady-state one, and power
flow formulation or Q-V curves were used to get node
sensitivity information [1]. From this point of view,
sensitivity and modal analysis of standard (or reduced) LF
Jacobian matrices provides analytical tools in determining bus
and branch participation factors even for large and complex
networks [2-4].

However, dynamic aspects can not be neglected in the
framework for voltage collapse analysis and an accurate
mathematical model of the network components is required, if
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large perturbations occur and short-medium term transients
become topical [5-6]. As a consequence the overall system
should be modelled by a set of differential and algebraic
equations, in which the LF equations are included as
constraints. Because of the non-linear nature of this set of
equations, earliest approaches were based on linearisation
techniques well documented and providing information about
local steady-state equilibria {7-11].

In the last years, bifurcation theory has led to a more
accurate analysis of the bebhaviour of systems subjected to
small perturbations; the small signal approach has been
therefore refined with sophisticated analytical tools, that can
highlight voltage stability and enable to classify power system
equations in simple well-assessed forms [12-19].

By the way, bifurcation theory is mainly a local analysis
and fails to investigate dynamic behaviour due to large
perturbations that seems to be an important aspect of voltage
collapse phenomena.

Our intent is to merge the steady-state approaches based on
LF Jacobians and dynamic ones, in view of exploiting the
power flow equations without losing the information stated by
differential equations. The aim is to implement a hybrid
criterion that could combine numerical integration methods
with the computation of stability indices, like companion
procedures proposed for transient stability assessment.

In this paper, a dynamic LF Jacobian matrix is used for the
derivation of time-varying stability indices. These ones can
afford the diagnosis of incipient voltage instability in system
characterised by possible saddle-node bifurcation points, as
well as the localisation of nodes, to which components
concerned to the critical dynamic processes are connected.
Indeed, reference to Lyapounov exponent theory [20] allows
extensions to large perturbations and enables continuous
monitoring of voltage stability margins.

Finally, validations of theoretical assessment is first
performed on a simple radial network with controlled load
voltage, and afterwards on the 30-bus IEEE test network,
properly stressed in order to drive the network towards diffuse
voltage collapse, accounting for dynamic model for
generators.

II. OUTLINES OF THE PROPOSED METHOD

The mathematical model of an electric power system can be
described by a set of algebraic and differential equations,
which are not linear:

i=F(xy) 1)
0=0G(x,y) )

where xeR", yeR™ are vectors representing the state variables
and the algebraic variables, and F:R""™"—>R" and G:R"""—>R"
are assumed to be smooth, i.e. F,GeCt k> 1.
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The linearisation of (1) and (2) around a steady state
operating point leads to the well-known form:

Mol o

where Jj., represents the LF Jacobian matrix where load
models are taken into account and that is typically used in
voltage collapse assessment.

The application of the Schur formula to the matrix A, with
the hypothesis that F, is not singular, leads to write the
relationship:

det(4.) = det(F, )det(/ ., - G,,F;'Fy)= det(F, )det(J rp )'
4

where a dynamic LF Jacobian matrix has been defined:
i =S 1py = Gxevle ©)

In comparison with the traditional LF Jacobian matrices,
the main advantages offered by the use of the dynamic LF
Jacobian matrix, in a modal analysis approach, is that it
ensures a link with the system differential equations, thus
permitting the state variable dynamics to be taken into
account. Moreover, since J;z, preserves the structure of a LF
Jacobian matrix, it can be reduced, in analogy with the
procedure proposed in [4], into the matrix:

-1
J oy = epigyy = Lrpigey Lroerey Lrpey (6)

Equation (6) defines a matrix whose dimension is equal to
the number of the network buses, hence, estimating its
eigenvalues and relative participation factors (as described in
[4]) can be useful for localising physical nodes that are
involved in instability phenomena.

The Jacobian matrix J,p, in addition with concepts of the
bifurcation theory, is already been used in previous works [8,
11] for static or small signal studies.

With the intent of extending the conclusions that can be
obtained by the bifurcation analysis beyond the
neighbourhood of local equilibria, we adopt the approach that
lead to Lyapounov exponent theory for studying time
evolution of systems subjected to large perturbations [20].

In order to explain these concepts, let us represent with
®(x) the system equations (1) in which the algebraic
equations (2) are assumed to be inverted for eliminating y,
and take a reference trajectory x,(¢), for which %, = ®(x,) is

satisfied. Let us now observe a neighbouring trajectory at an
infinitesimal distance, which appertains to a small initial
perturbation X(z,) .

Neglecting higher-order terms, it can be asserted that:

x(t) = (90 /0x)|, %) 0]
where:
@/ ax)|w) = ey -F, x,(:)[’l'-”’lw) ]_llex,u) ®
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Obviously, if the system is autonomous, as in the case of
step perturbations, it is also X(¢) = x,(¢), hence the system

behaviour can be stated by the stability of X(z) . However the

general structure of equation (7) could be useful for stability
studies for non-autonomous systems.
It has been stated that X(r) represents the difference

between the reference trajectory and the new trajectory of the
system, varied by an initial infinitesimal X¥(¢,). This
statement can seem in contrast with the intent of studying
dynamics of power system subjected to large perturbations,
but it is not the case. We just need the formal presence of an
initial small variation X(f,) to make possible the

identification of (7) and the consequent inferences about
system stability.

In order to explain this aspect, we limit our investigation to
saddle-node bifurcations, and, in the following section, we
will consider power systems where the presence of this
bifurcation in dynamic equation has been proven to cause
voltage instabilities [11, 17, 18].

It is possible to demonstrate [20] that this kind of
bifurcation is structurally stable, where with structural we
intend the ability of the system of proving robust with regard
to small deviations. In particular saddle-node bifurcation is
structurally stable with regard to small variations of a constant
term, of lower-order terms and of higher-order terms in the
Taylor series of the vector field in the neighbourhood of a
non-hyperbolic fixed point.

This property allows assuming that the varied system does
not behave differently from the reference trajectory, that is the
real trajectory along which the system is evolving.

On the other hand, reference trajectories are not necessarily
conditioned by small or infinitesimal parameter variations
with respect to initial equilibrium point, but can be generated
by any kind of perturbation.

The assumption about - structural stability of system
equations allows investigating the behaviour of non-linear
systems during their time evolution. Furthermore, the
presence of saddle-node bifurcation equilibrium points
suggest that the state variable evolution is mainly monotonic
and characterised by a convexity change if an instability
occurs. Another consequence is that if one real eigenvalue of
O®/0x becomes and remains positive the state variables x,(7)
and X(¢) diverge.

Furthermore, the change of sign of a real eigenvalue results
in a change of sign the determinant of the Jacobian matrix
0®/0x and this fact leads to a criterion for detecting system
instabilities.

Applying once again the Schur formula to 4, and from (4),
(5), (6) and (8), it can be derived that:

detlJ lJ-‘D(R)]

detlJ v | ©

detl:%%:] = det[F, JdetJ 1rp pey ]

where it has been assumed that the (P9) partition of J, -, is not
singular.

Equation (9) reveals the possibility of monitoring the time
dependent function Jpsp instead of 6®/0x with the aim of
determining stability indices during dynamic evolution of the
system.



Whereas the determinant produces a global information, the
computation of the eigenvalues and eigenvectors of Jy g
makes possible, as said above, the localisation of nodes more
interested in instability processes. It has to be noted that in [4]
this technique is applied to a reduced standard Jacobian
matrix computed at an equilibrium point, whereas our
computations are assumed to be made on a time-varying
matrix whose variation is driven by system dynamic
evolution.

In (9) appears also that J;;, is assumed to be not singular,
whereas it is well assessed the importance of this matrix in
detecting singularity induced bifurcations, i.e. mismatch of
the algebraic equations [15, 19]. By the way it will be shown
in the following section that singularity induced bifurcation
and relative voltage collapse happen only after that one
eigenvalue of the dynamic LF Jacobian has changed sign and
then after the detection of voltage instabilities.

Summarising, our method can be divided into three main
points that are repeated at each time simulation step:

e  determination of the system state variables;

e computation of eigenvalues of Jypg and their
participation factors to network buses;

e check of eigenvalue changing sign.

When a change of sign is recognised, it is also detected an
incipient instability, and system voltage collapse is going to
happen if no corrective action is taken.

It has to be noted that static studies based on scalar
parameter sensitivity are generally the more traditional way to
approach this kind of events, such as voltage collapse or
voltage instability [3, 7]. Furthermore, since the instability
process is characterised by a monotonic evolution of the state
variables, simulation could be avoided and a direct detection
of the final equilibrium point, if it exists, could be used.

By the way, classical static methods that manage to
produce load margin curves or determine the point of collapse
of the system must be repeated for each parameter taken into
account, and generally are used in off-line studies and in
predictive controls.

Our method, instead, appears to be independent from the
choice of the parameter variation or from the applied
perturbation, and could be likely utilised in on-line
applications as a system monitoring for corrective
evaluations. In this case, the acquisition of measures from the
network and the estimation of the state variables could replace
the first step of the method.

It is also to be noted that for very large networks, the
computation of all ecigenvalues of Jympg could be a
considerably effort, but it is also been demonstrated [4] that
only the lowest eigenvalues are really informative and for this
aim algorithms that extract the lowest eigenvalues are been
successfully developed.

Finally, we have to underline that the structure of J; g, has
the same degree of sparsity of the more traditional LF
Jacobians and only sparse matrix notation is used in the
simulation examples to achieve dynamic indices. In such a
way, the computation of J; g appears to be reliable even for
huge networks, whose sparsity degtee is generally very high.

III. VALIDATION ON TEST CASES

The possibility of monitoring voltage stability by the
calculation of the determinant of the dynamic LF Jacobian
matrix is investigated in this section through time domain
simulations of power systems with dynamic components. The
examples concern a simple radial system with an LTC
transformer and the IEEE 30-bus test network with ‘five
synchronous machines. For sake of clarity, in the first system,
it is defined the algebraic and differential model and it is
pointed out the existence of an equilibrium point where a
saddle-node bifurcation occurs. Finally, time domain
simulation in which the system runs into voltage instability is
presented, comparing time evolutions of the standard LF
Jacobian with the det(Jprxg) one. In the second example only
results are reported and an utilisation of participation factors
of Jum, eigenvalues is presented.

A. Static Load under Controlled LTC Transformer

Fig. 1 represents a simple radial network feeding a static
load by an LTC transformer. The term x, stands for the line
reactance, whereas the effect of LTC internal voltage drop is
neglected, for sake of simplicity.

m:}

V5,00=0 vy, 0, vL
% | @:}—P—III—’#
xy

Fig. 1 - Equivalent circuit of the sample power system including an LTC
transformer.

The tap ratio varies continuously without hard limits and
the secondary voltage regulator is assumed to be proportional
with one pole, as shown in Fig. 2. Indeed 4 << £, so that the
behaviour of the regulator is quasi-integral.

Network and load
l parameters

NL > m

p+h

Fig. 2 - Typical control loop of an LTC transformer.

If the real and reactive load demands are modelled
according to conventional voltage dependent laws, the
following per unit equations can be identified:

. _ _‘l_ ]

i = hm+k(m vn,) (10)

0=P,_(v—‘) 4R 1)
m

0=QL[_"L) "+o (12)
m

where P, and Q, are the power injections at node 1 and are
linked to the network by the traditional LF equations, written
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considering the voltage magnitude and phase angle at the
ideal primary winding as the LF variables.

The linearised equations lead to the following Jacobian
matrices:
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If we assume constant impedance load, i.e. a0, = 2, the
differential equation becomes:

m

J;LZ(P,_Z + QLZ)T2QL.7ch2 +m?

m=~hm+k| v,

-v, |18

Assuming Q; as the parameter and keeping other quantities
constant (v, = 1,v, =1, P, =0.6, x, = 0.3, k= 0.1, k = 0.001),
the system presents one possible saddle-node bifurcation point
occurring at m = 0.531 and Q; = 0.725.

Fig. 3 shows the dynamic evolution of the system when it is
forced by a step variation of the reactive power Q, from 0.3 to
0.8 (p.u.): since the reactive power demand increases over the
value for which bifurcation occurs, the introduced stability
index, namely det(J,.,), change sign (Fig. 4) and the system
subsequently gets into voltage instability, well before the
voltage collapse detected by the zero crossing of det(J;zy).
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Fig. 3 - Dynamic evolution of tap ratio (m), voltage at node 1 (v).
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Fig. 4 - Dynamic evolution of the determinant of both J; and Jyzp-
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B. Overloaded IEEE 30-node test network

The presented voltage stability assessment method is now
extended to a multi-dimensional problem, that is the standard
topology of IEEE 30-node text network, reported in Fig. S,
with a rough overloading factor of 140 % with regard to the
usually proposed steady-state system profile.

GENERATORS
SYNGHRONOUS
mllill_uﬂi

Fig. 5 - IEEE 30-node test network.

The overall test case provides a set of differential
equations, initially associated to components like synchronous
machines and condensers, each represented by a third-order
dynamic model; on the whole, we must account for 15 state
variables, among which 5, i.e. e’, are closely related to the
voltage stability problem.

In order to cause voltage instability phenomena, it is
assumed a nearly sudden increase, placed at each node
presenting loads, of required reactive power from 140 % to
170 % of the reference load profile. No modifications are
assumed for real power requirements, considering the well-
known decoupling effect, which reduces the influence of
active power perturbations on node voltage dynamics. If
otherwise considered, we will exclusively notice a sort of
noise effect, of limited amount, on voltage stability index
behaviour, due to electromechanical oscillations.

Fig. 6 reports the evolution of node voltages in response to
the previously introduced contingency.

0‘ 1 1 . A i A A L I
0 5 10 15 2 y-3 0 k) 40 45 50
time (s}

Fig. 6 — Voltage profiles at network nodes.



Insight of the presented dynamic behaviours reveals that
each voltage magnitude shows an aperiodic profile and that
loss of system stability is visually associated to a couple of
detectable phenomena. The first one is an almost
contemporaneous, according to the presented time scale,
change in curve convexities, placed nearly at 20 s after the
simulated contingency. This lead towards a general diverging
effect on network voltage profile. The second main effect,
obviously correlated to the first cited one, and located around
50 s, is a common collapse of node voltages, analytically
linked to the loss of causality of the algebraic model.

~ Gl
8- detldyd) |

" " n " L A

20 - 3 35 40 45 50
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Fig. 7 — Dynamic evolution of the determinant of both J;zy and J; rp zoomed
around instability detection.

Fig. 7 shows, as introduced in chapter II, a zoom of time
evolution of the determinant of both J; ¢, and J;, confirming
how loss of causality occurs after the detection of instability.

According to the previously proposed theoretical
developments, it results quite significant to detail on Jyrpp,
eigenvalues, considered in their temporal evolution. With
regard to this point, Fig. 8 proposes, obviously on the same
time frame, the smallest eigenvalues, closely related to
voltage stability assessment, since presumably better
candidates for sign changing. In fact, a sorting algorithm is
included in eigenvalues determination, so that at every time
step a eigenvalue classification is provided, with the
associated chance to link them to specific nodes, by
computing participation factors.
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Fig. 8 - Time evolution of the lower eigenvalues of the reduced dynamic LF
Jacobian matrix.

In other words, eigenvalue dynamic behaviour could
present order modifications, but this occurrence is surely
detected, and consequently correlated to a specific network
zone.

The previously introduced participation factors are the
instruments to connect system dynamic instability to relevant
topology: each eigenvalue presents prevailing participation
factors towards specific network areas, that is a voltage
instability phenomenon is immediately associated to a part of
the system, and subsequently, as Fig. 9 confirms, more and
more clearly connected to a single node.
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Fig. 9 - Participation factors of the lowest eigenvalue of the reduced
dynamic LF Jacobian matrix.

Electromechanical oscillations affect in a really limited way
the proposed dynamic behaviours, resulting in small ripple
effects. As a proof, simulations have been performed
considering a first order dynamic model for all rotating
machines, with no significant differences in the interesting
quantities.

On the other hand, since J;zpp eigenvalues could be used
for on-line applications, the remarks on electromechanical
oscillations would justify the use of a signal low-pass filter to
avoid inaccuracies, or continuous on/off effect, in sign
changing detection.

Account for AVR or over-excitation limiters (OXL) on
synchronous generators, even if advisable for more complete
machine modelling, does not affect the overall system
behaviour and the proposed conclusions. This occurs since
AVR and/or OXL do not introduce additional saddle-node
bifurcations, but only could result in Hopf ones [18].

Moreover, AVR saturation leads the dynamic form of the
system to the third order computed one, as well as OXL
intervention only results in a smoother occurrence of voltage
collapse.

IV. CONCLUSION

This paper has presented the description of a criterion that
allows estimating the occurrence of voltage instability
processes in electrical power systems.

Because a particular dynamic LF Jacobian matrix is used,
typical concepts of static approaches are combined to standard
time domain simulations.

The proposed method appears to be independent from the
choice of parameter variations or from applied perturbations,
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and could be likely utilised in on-line applications as a system
monitoring for corrective evaluations.

The criterion has been successfully applied to the IEEE 30-
node test network with five synchronous machines. The
computation of the smallest eigenvalues and relative
participation factors of the reduced dynamic LF Jacobian
matrix has proved to be informative about the localisation of
nodes, to which components concerned to the critical dynamic
processes are connected.
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