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Abstract—This paper investigates the suitability of the
Ornstein-Uhlenbeck process, driven by various Lévy processes,
for load modeling at the distribution network level. An in-
depth description outlining the procedure for estimating the
required parameters is given. Both the statistical properties of
the simulated processes and its auto-correlation is compared
to that of the field measured data to demonstrate the suit-
ability of the proposed methodology. The development of such
stochastic models is facilitated by measures obtained from micro-
synchrophasors (¢PMU’s). The data from these devices serves to
demonstrate the need to model the volatility along with validating
a model attempting to model said volatility.

Index Terms—Distribution system, Ornstein-Uhlenbeck pro-
cess, load modelling, micro-synchrophasors (PMU’s), volatility.

I. INTRODUCTION

Traditionally, power system analysis has been carried out
based on deterministic differential algebraic equations. For
this reason, the distribution grid has been modeled through
highly simplified equivalent systems or by aggregated voltage
dependent loads [1]. This is acceptable, however, only if such
aggregate models exhibit limited volatility.

In recent years, the impact of the dynamic behavior of
distribution networks has grown considerably due to the
emergence of, among others, demand response, intermittent
and distributed energy resources, and electric vehicles. This
transition is causing a paradigm shift in the role of the
distribution grid. While it had once been a passive participant
in the delivery of power, it is now set to become an active
player.

For these reasons, the power system network is set to move
away from a primarily centralized deterministic environment
and tend towards a distributed stochastic network. In order
to maintain system reliability, power system simulation tools
must evolve to capture this stochastic behavior.

The impact of these stochastic sources becomes more ev-
ident as the focus shifts from the transmission network to
the distribution network. For example, of particular focus for
this paper, the level of volatility in the power demand at
individual feeders can be quite significant, as shown in Fig. 1.
While heuristic techniques are employed to forecast load and
minimize the uncertainty, a load modeling practice must be
developed to capture the volatility witnessed in Fig. 1.
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Figure 1. Sample daily load profile from ©PMU measurements

In this paper, load volatility is modeled based on stochastic
calculus and, in particular, the Ornstein-Uhlenbeck process,
which is outlined in Section II. For a more thorough treatment
of stochastic calculus the interested reader is directed to [2].
Although the Ornstein-Uhlenbeck process has previously been
utilized in the literature, a rigorous development and validation
of this process has thus far been lacking. This work will
serve to demonstrate its suitability along with the derivation
of suitable model parameters.

Micro-synchrophasors (uPMU’s) are a new measurement
device developed by Power Standards Lab (PSL) optimized
for distribution and microgrid applications [3]. In this instance,
they are utilized for the purpose of recording instantaneous
power measurements for the development and validation of
the proposed model. These devices are set to address his-
torical issues regarding instantaneous measurements on the
distribution network and overcome the technical challenges
such as determining the phase angle differences, which on the
distribution network are up to two orders of magnitude smaller
than those on the transmission network [4]. A brief overview
of these devices is given in the Appendix. The devices in
question are installed on the campus of Lawrence Berkeley
Lab and have a sampling frequency of 120 Hz.

A. Review of Stochastic Load Modeling

Stochastic differential equations (SDE’s) have been widely
exploited in numerous fields of science and engineering. Their
use in power system analysis, however, has thus far been
limited. Recent studies have demonstrated the suitability of



stochastic calculus for power system analysis, e.g., [5], [6] and
[7]. However, the models proposed in these references are not
based on real-world measurements and data. One study which
successfully demonstrates the suitability of SDE’s is [8]. Here,
the authors utilize wind speed data from a particular site in
order to develop two continuous wind speed models based
on the Ornstein-Uhlenbeck process. The resultant models
successfully exhibit similar statistical properties to that of the
recorded wind data, therefore demonstrating the usefulness of
stochastic calculus for power system analysis.

With specific regard to load modeling, there have been
previous attempts to utilize stochastic calculus for capturing
the volatility of load. One such study is [9] whereby the
authors used SDE’s, driven by the Wiener process, to add
volatility to a deterministic load model attempting to capture
the impact of cold-load pick-up on transformer aging. It was
concluded that the parameters of the employed Ornstein-
Uhlenbeck process had a significant effect on the aging of the
transformer. However, the range over which these parameters
were varied, coupled with a lack of intuitive understanding
regarding the effect of these parameters, limits the usefulness
of these results.

The most pertinent load modeling studies in the context of
this work are [10] and [11]. In both instances, the authors
sought to model electrical load as an Ornstein-Uhlenbeck
process, driven by the Wiener process, derived from field mea-
surements. In particular, in [11], the author gives a thorough
treatment of load modeling utilizing the Ornstein-Uhlenbeck
process. A rigorous development and validation of the pro-
cess, however, is lacking as the author was restricted by the
granularity of the available data. The high sampling frequency
of the deployed uPMU’s will overcome this difficulty.

B. Contributions

Despite the Ornstein-Uhlenbeck process being proposed
and utilized in the past, there exist major limitations in
its exploration to date. This work seeks to demonstrate the
following:

e The Ornstein-Uhlenbeck process driven by the Wiener
process, as has been employed in prior studies [9], is not
universally applicable for capturing the volatility of active
power demand.

¢ The Normal-Inverse Gaussian (NIG) process is shown to
be more appropriate for capturing the heavy-tails of the
distribution of the active power increments.

o The paper also shows that the summation of the Wiener
process with a compound Poisson process offers a further
improvement again on the NIG process.

« The work is then extended to incorporate the modeling
of reactive power through stochastic calculus.

II. SToCHASTIC CALCULUS

A stochastic differential equation is defined as a process
driven by a long term trend, referred to as the drift, and

stochastic behavior acting upon this drift, referred to as the
diffusion of the SDE. Such a model is represented as follows:

de = f(x,t)dt + g(z,t)dL(t) (1)

where f(x,t) is the drift function and g(x, t) is the diffusion of
the Lévy process, L(t). In the multi-dimensional case, g(z,t)
is a co-variance matrix which dictates how the vector of Lévy
processes enter the system.

Lévy processes are continuous-time stochastic processes
with independent stationary increments. The Wiener process
and the Poisson process are examples of Lévy processes. A
real-valued stochastic process L(t),t € [0, co), is a Lévy
process if the following is satisfied [12]:

1) X,=0

2) Independent increments: For every increasing times

to...tn, the random variables X; , X, — Xy, ,..X:, —
X, , are independent;

3) Stationary increments: The distribution of X, — X,

does not depend on ¢;

4) Stochastic continuity: Ve > 0limp, o P(|Xrn — X¢| >

€)=0

The SDE in (1) can be formally integrated to obtain:

w(t) = 2(ty) + / Fa(t). t)dt + / a((t), ()dL(E) (@)

The first integral on the right hand side of (2) can be deter-
mined with classical calculus such as the Riemann-Stieltjes
integral however the same cannot be said about the second
integral. Due to the unbounded variation associated with
stochastic processes, the Riemann-Stieltjes integral fails to
converge. An alternative approach is therefore necessary. In
this instance, the It6 integral is the chosen solution.

SDE’s of the form presented in (1) exhibit unbounded vari-
ation. In the context of load modeling, unbounded variation is
not an accurate representation of the loads behavior. Although
power demand does exhibit stochastic behavior, this behavior
tends to manifest itself as volatility in the vicinity of the
forecasted demand. The stochastic process most reflective of
this is the Ornstein-Uhlenbeck process, as follows:

dxy = y(u — z¢)dt + dL(1), v>0 3)

where  is the mean reversion rate, which forces the stochastic
behavior of the load to remain somewhat close to the long-
term mean, p. Such a process is typically driven by the Wiener
process, however, for the purpose of this study the process will
be extended to be driven by more generalized Lévy processes.
The solution of (3) for the case of the Wiener process is:

t
X =p+ (2o — pe "+ (T/ e~ 7t=5) dap, )

0
whereas the expected value E and variance Var are given by:
E[Xi| Xy =20 = 1+ (w5 — p)e 7" (5)

o2
Var[X;| X, = z,) = —(1

oyt
o —e ). (6)



III. PROPOSED METHOD

For the purpose of this study, the Ornstein-Uhlenbeck
process is utilized solely for modeling the volatility of the
load. Therefore to accurately validate its capabilities to do so,
the uncertainty in the forecasted demand must be minimized.
In order to achieve this the forecasted demand will be taken as
the mean of measured daily profiles at 15 minutes intervals.

In order to correctly characterize the background driving
process, we determine first the distribution that best fits
the increments of the active power. This process has been
theorized to be the Wiener process [8], [10], [11]. In the
context of power system modeling the Wiener process may
be a suitable driving noise process at higher loading levels,
such as at the transmission level, which was of interest in [8],
[10], [11].

At the distribution level, however, individual end-uses can
carry a greater weighting in the the behavior of the power in-
crements. A normal distribution may not be able to accurately
capture these increments. Measured distributions frequently
exhibit heavy tails (see, for example, Fig. 2), which cannot be
replicated by the Wiener process [13], [14]. In such instances,
alternative processes must be considered.

This work both analyzes the suitability of the Wiener
process and investigate alternatives which improve the model
performance. As the volatility of the load is expected to
vary throughout the day, dependent on occupancy, the day is
segmented into hours. Appropriate parameters for each of the
processes of interest are estimated for each of these hours.

There are a number of methods for estimating the mean
reversion rate, . However, many of these suffer from bias. In
order to improve accuracy, a martingale estimating function
proposed in [15] and implemented in [16] for modeling
temperature is utilized in this paper.

Based on the method above, an estimation of the value « is
given by a zero of the equation:

Gn(y) = Z M{Xz — E[X;|X;-1]} (7

-1 T
whereby p
b(Xii7) = S+ = X)) ®)

The expected value of the Ornstein-Uhlenbeck process is given
by

EX|Xi—1] = pe + (241 — pe—1)e”” 9
Therefore
Gu(7) =) M_lagiXi_l{Xi = (Xic1 — pi—1)e™” — i}
= (10)

for which the unique zero of (7):

" Yo { X —
v=—log< Limy YiotlXs i} ) an
Yo Yo { X — pi—a}
where
i— —Xi,
) A (12)

0i—1

In the case study discussed in the following section, to
validate the proposed methodology, the statistical properties
of the realizations generated via the Ornstein-Uhlenbeck and
its auto-correlation is compared with that of the measures from
the uPMU’s.

The simulation of SDE’s is a subject which has been thor-
oughly investigated in prior literature. The interested reader
is directed to [17] and [18] for a thorough exploration of the
simulation of SDE’s. For the purpose of this work the sample
realizations were generated using Euler-Maruyamascheme,
with a total of twenty days being generated, corresponding
to 1,728,000 individual values for each of the investigated
processes.

IV. CASE STUDY

The sampling rate of the installed (PMU’s is 120 Hz. Each
individual sample is comprised of the instantaneous voltage
and current phasors for each individual phase. The active and
reactive power was calculated and served as the inputs to the
proposed model. For the purpose of this study the data is
down-sampled to one second intervals. A total of 20 weekdays
worth of data was collected.

As discussed in the previous section, the appropriate
background-driving Lévy process is determined first. Then,
sample realizations of the Ornstein-Uhlenbeck process are
generated and the statistical properties of these realizations are
compared with that of the measured data in order to validate
the proposed model.

Subsection IV-A below rigorously explores the active power.
An application and necessary adjustments of the proposed
methodology for the reactive power and analysis of results
is discussed in Subsection IV-B.

A. Active Power

1) Characterizing the Driving Process: Fig. 2 shows a
distribution of the active power increments for a sample hour.
The corresponding normal distribution is overlaid. The data
appears to be normally distributed. The corresponding normal
distribution, however, reveals the distribution to be a fat-tailed
distribution. The normal distribution poorly fits the data in this
instance and questions the validity of the Wiener process as
the background driving noise in this instance.
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Figure 2. Active power increments with corresponding normal distribution



A more representative distribution for the increments of
the power is the Normal-Inverse Gaussian (NIG) distribution.
Such a process has been widely investigated for capturing the
heavy tails of observed data [14] [19]. If N has a distribution
described by the NIG distribution, its typically noted as:

N ~ NIG(a, 8,6, ) (13)

where « is a steepness parameter, § is an asymmetry parame-
ter, § is a scale and p is the location parameter. The variance
of the NIG process is given by:

2
9 o

= @

For the purpose of this work, 5 = 0 and p = 0 are assumed.
These values lead to a symmetrical distribution centered on 0.

The Ornstein-Uhlenbeck process takes the form of (15)
when driven by the NIG process, n(t). The NIG process is
simulated by randomly sampling from a NIG distribution with
specified parameters, o and 6.

(14)

dxy = v(p — x)dt + dn(t) (15)

Fig. 3 shows the data with both a normal and NIG distribu-
tion overlaid. The NIG distribution was fit to the data utilizing
the R package ghyp [20]. The NIG distribution is a significant
improvement on the normal distribution.
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Figure 3. NIG distribution fit to active power increments

In order to asses the capability of both these distributions
on capturing the heavy tails of these distributions the log of
the density is examined. This is shown in Fig. 4. The NIG
distribution, as expected, is an improvement in fitting these fat
tails however it is not able to fully capture said tails. Figure
4 demonstrates the unsuitability of the Wiener process for
modeling the power demand of this particular feeder. Hence,
while the Wiener process may well be suitable for specific
feeders, the assumption that it is suitable for the majority of
feeders is unsubstantiated.

The importance of accurately modeling the extreme values
of these fat-tailed distributions is set to increase as the level
of stochastic behavior increases on the distribution network.

As DG, particularly in the form of PV, increases on the distri-
bution network it becomes increasingly critical to understand
how the stochastic behavior of these resources propagates
through the network. Such an understanding would allow for
the identification of the optimal localized control strategy.
This is particularly pertinent for microgrids which may have
islanded themselves from the grid.
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Figure 4. Evaluation of the ability to capture tails of measurement data
through the Gaussian and NIG distributions.

To accurately model the heavy-tails shown in Fig. 4 is
important to properly capture the volatility of the data. A
further improvement on the NIG process is thus desirable. This
improvement comes from considering the driving process as
a jump-diffusion model. That is, considering the process as a
sum of the Wiener process and a compound Poisson process.
These types of models are widely considered in stock prices
which are susceptible to sudden price spikes. Such a model
has also been employed for modeling electricity prices [21],
[22]. A jump-diffusion model has some appealing intuitive
aspects for modeling the driving noise at lower loading levels.
The Wiener process captures the aggregation of minor load
variations, e.g., switching of lighting, appliances increasing
their power consumption, while the Poisson process captures
the discrete switching of large power consumers, e.g., air
conditioning or motors.

The resultant proposed Ornstein-Uhlenbeck model takes the
form:

dxy = y(1 — z¢)dt + odw(t) + Jrdgy (16)

where J; is a random variable given by an appropriate distribu-
tion describing the jumps and ¢; is a Poisson random variable
with intensity A such that

th{

In this paper the jumps are modeled by means of a generalized
Pareto distribution as this best fits experimental pPMU data.

In order to calibrate the jump diffusion model, the driving
process must be decomposed into an appropriate Wiener and
compound Poisson process. This is achieved by utilizing the
parameters of a ¢-distribution as a proxy for a more appropriate

1 with probability \dt

0 with probability 1 — A\dt an



normal distribution tuned to the peak. Following this, any
increment which lies outside 3 times the standard deviation
is classified as a jump. The A\ parameter is given as the rate
of these jumps while a distribution is fitted to the jumps
themselves.
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Figure 5. Comparison of the active power auto-correlation of experimental
and simulated processes

2) Analyzing Model Performance: The field-measured data
was utilized to calibrate both processes of interest. A mean
reversion rate of 0.0125 was estimated. A larger value for the
mean reversion rate corresponds to more sharp oscillations
around the mean while a lesser value tends to facilitate a more
gradual return towards the mean. The mean-reversion rate is
comparable to the decay constant in the behavior of the half-
life phenomenon associated with physics whereby the mean
can be equated with being a stable state.

The auto-correlation of the generated realizations is com-
pared with that of the recorded data. The auto-correlation
corresponding to lags up to one hour was calculated. At lags
beyond this, the underlying trend, rather than the volatility, was
deemed to be primarily responsible for the auto-correlation.
Fig. 5 shows the auto-correlation of both processes. Both
process closely model that of the recorded data with the jump-
diffusion model marginally out-performing the NIG process.
This was expected as the NIG process under-performed in
replicating the larger increments. The auto-correlation, how-
ever, only partly validates the processes.

Fig. 6 shows the cumulative distribution function of the in-
cremental active power generated by relations of the processes.
Both the NIG process and the jump-diffusion closely mirror
the smaller measured increments within the range investigated
in Fig. 6.

The motivation for considering both the NIG and jump-
diffusion stemmed from the existence of heavy-tails. Therefore
to benchmark their respective performance in capturing these
tails Fig. 7 focuses on the larger absolute active power incre-
ments. The NIG process approaches the field measurements,
although as the log-scale histogram suggested in Fig. 3, it
only partly succeeds in re-creating the larger jumps. The jump-
diffusion model, in this instance, is the process most successful
in recreating the larger measured increments.
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Figure 6. Sample plot of the density percentage active power difference
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Figure 7. Sample plot of the density percentage active power difference

Fig. 8 compares the cdf of the normalized active power of
each of the processes with that of the measured active power.
In each case, the profiles were normalized about the fifteen
minute mean of the measured active power. Both the NIG and
dump-diffusion process show a goo match with the measured
data, with the jump-diffusion a slight improvement on the NIG
process.
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Figure 8. Comparison of experimental and simulated cumulative distributions
of normalized active power



Fig. 9 shows a sample realization, for a one hour period,
of the Ornstein-Uhlenbeck process driven by the NIG process.
Both the forecasted demand along with the output of the
Ornstein-Uhlenbeck process are presented in order to develop
an intuitive understanding of the process.

— Forecasted Demand
Ornstein—-Uhlenbeck Output

340 ]

Active Power Demand [kW]
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Figure 9. Comparison of experimental and simulated auto-correlations of
reactive power

B. Reactive Power

The proposed methodology is extended in this section in an
effort to model the reactive power. The reactive power exhibits
volatility dissimilar to that of the active power and thus is
treated separately. Figs. 10 and 11 compare the cumulative dis-
tribution function of the simulated data to that of the measured
data for both the simulated values and associated increments
respectively. Both figures demonstrate the suitability of the
Ornstein-Uhlenbeck process driven by both the NIG process
and the jump-diffusion process for modeling reactive power.
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Figure 10. Comparison of experimental and simulated cumulative distribu-
tions of normalized reactive power

A comparison of the auto-correlations, however, reveals the
NIG process to be the more suitable process in the context
of modeling reactive power. The process accurately captures
the autocorrelation of the field measured data. This may stem
from the reactive power being less susceptible to larger jumps
and that the deployment of a jump- diffusion model may
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Figure 11. Comparison of experimental and simulated cumulative distribu-
tions of normalized of the increments of reactive power

result in an ill-fitting distribution attempting to describe the
larger jumps. Also it was noted that there larger jumps usually
manifest themselves as large positive increments followed
almost immediately by a negative increment of similar size,
similar to the behavior of inrush current. Therefore there is
a level of deterministic behavior in these jumps that is not
captured by the jump-diffusion model. The NIG process does
not suffer this fate as it fails to capture these outlying jumps
due to their infrequency.
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Figure 12. Comparison of experimental and simulated auto-correlations of
reactive power

A potential advancement on the modeling of the reactive
power utilizing the NIG process would incorporate the effect
of inrush current from motor starts. Similarly, other events,
could be re-created utilizing stochastic calculus at their respec-
tive frequencies once they are recognized in measured data.

V. CONCLUSIONS

This paper explores the suitability of stochastic calculus for
capturing the volatility witnessed at lower loading levels. As
interest in distribution system analysis continues to grow with
the deployment of distributed energy resources, the ability to
replicate the load behavior increases in importance.



The comparison of experimental data and simulation results
shows that the Ornstein-Uhlenbeck process accurately models
the behavior of electrical load at a feeder level. The case study
also shows that the Wiener process may not be a suitable
driving process, as had been previously been proposed in
prior studies. Instead the NIG process may be a more suitable
driving noise process in an attempt to capture the heavy-tailed
distributions of the active power increments. A jump-diffusion
model, a summation of a Wiener process and compound
Poisson process, offers a further improvement in the context
of active power.

The extension of the proposed similarly reveals the capabil-
ities of the proposed method for modeling the reactive power.
In this instance, however, the NIG process revealed itself to
be a more suitable driving noise process.

Potential future work following on from this study include
the investigation of various feeders with different customer
mixes and determining whether the NIG process is universally
a suitable driving process or whether the Wiener process may
suffice for certain customer mixes.

The use of stochastic calculus can also be extended to re-
creating events in order to ensure system security, Once events
have been identified from measurement data, they can be re-
created with mirroring probabilities in power system studies
utilizing stochastic calculus which would facilitate a more
accurate time evolution of the trajectory of the system.

It’s critical that stochastic calculus and current modeling
techniques not be thought of mutually exclusive approaches,
but rather complimentary. A load model, or similar, could be
the sum of numerous periodic waveforms, e.g. representing
the cycling of air conditioners, and a stochastic driving noise
process, representing the human interaction with buildings.
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APPENDIX

uPMU’s
The ;PMUs used in the LBNL test network were developed
by Power Standards Laboratory [3]. uPMUs can capture por-
tions of the operating state of the system to provide actionable
intelligence in real-time. Each individual sample encompasses

the magnitude and phase angle of the voltage and current
phasors for all three phases individually and the GPS time

stamp.
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