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Abstract— This paper focuses on the small-signal stability anal-
ysis of systems modeled as Neutral Delay Differential Equations
(NDDEs). These systems include delays in both the state variables
and their first time derivatives. The proposed approach consists
in descriptor model transformation that constructs an equivalent
set of Delay Differential Algebraic Equations (DDAEs) of the
original NDDE. The resulting DDAE is a non-index-1 Hessenberg
form, whose characteristic equation consists of a series of infinite
terms corresponding to infinitely many delays. Then, the effect on
small-signal stability analysis is evaluated numerically through a
Chebyshev discretization of the characteristic equations. Numer-
ical appraisals focus on a variety of physical systems, including
a population-growth model, a partial element equivalent circuit
and a neutral delayed neural network.

Index Terms— Time delay, delay differential algebraic equa-
tions (DDAEs), neutral time-delay differential equations (ND-
DEs), small-signal stability, Chebyshev discretization.

I. INTRODUCTION

This paper focuses on the evaluation of the small-signal
stability of Neutral Time-delay Differential Equations (NDDES)
in the form:

0=f(x,x(t—71),z,x(t—71)), (1)

i.e., differential equations where the delays appear in both the
state variables and in their time derivatives. Systems in the
form of NDDEs have wide applications in applied mathematics
[1], [2], physics [3], ecology [4], [5], engineering [6], [7]
and neural networks [8]-[10]. Conventional approaches for the
stability analysis of a NDDE are based on Lyapunov-Krasovskii
Functional (LKF) techniques [8]-[13]. This technique requires
the solution of a Linear Matrix Inequality (LMI) problem,
which is computationally demanding but has been recently
made more tractable thanks to the LMI-Matlab Control Tool-
box. However, due to the complexity and conservativeness of
LKF, we believe a general and efficient methodology to study
the stability of NDDEs is still missing. This paper presents a
systematic approach to evaluate the small signal stability of
NDDEs.

Reference [11] provides a descriptor model transformation
approach that shows the stability of NDDEs (1) is consistent
with the comparison set of non index-1 Hessenberg form Delay
Differential Algebraic Equations (DDAES), as shown in Section
II. With the descriptor model transformation approach, we
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can develop the general stability analysis method of DDAES
to study the NDDEs.

Apart from LKFs-based approaches, some frequency domain
approaches are also developed [16]-[20]. Reference [16] pro-
vides systematic eigenvalue-based methods for DDAEs. This
approach is then further developed to solve the small-signal
stability of power systems [21], [22]. Basing on [16], reference
[21] improves the computation efficiency and simplifies the
implement of the eigenvalue-based approach through using
Chebyshev discretization to obtain the dominating eigenvalues.
The Chebyshev discretization method is proved to achieve the
best ratio of accuracy/computational burdens when studying
the stability of large-size systems, i.e., real-world power sys-
tem, in [23]. Especially, the Chebyshev discretization has also
been applied to non index-1 Hessenberg form DDAEs [24].
This paper is based on the results of [24] as the equivalent
DDAE in which the NDDE is transformed is a non-index-1
Hessenberg form.

Comparing with LKFs-based approach, the numerical ap-
proach provided in this paper has following advantages:

e Accuracy. The LKF approach provides only a sufficient
stability condition. Therefore, the stability assertions ob-
tained with the LKF-based approach tends to be conserva-
tive. The eigenvalue-based approach, on the other hand,
provides sufficient and necessary stability conditions, and
it is thus expected to predict more accurately the stability
margin of the system than the LKF approach.

e Efficiency. The LKF approach requires the solution of a
Linear Matrix Inequality (LMI) problem. The compu-
tational burden of LMI problems highly increase with
the size of the system. The numerical complexity of
the solution of the eigenvalue problem of large sparse
matrices, however, does not increase as much as that
of LMI problems, at least if only a reduced number of
critical eigenvalues is computed.

e Generality. For complex non-linear systems, defining the
Lyapunov function can be a challenge. Clearly, nonlinear-
ity is not an issue for the small-signal stability analysis,
which is based on the linearisation at an equilibrium
point. Linearisation can be a limitation in those cases that
require tracking the global stability but is nevertheless a
stability “workhorse” in several engineering applications.
The examples inlcuded in this paper also shows that using
a proper parametric analysis, the small-signal stability
analysis can lead to more accurate results than the LKF
approach.

The remainder of the paper is organized as follows. Section



IT derives the expression of the characteristic equation of
NDDEs based on the transformation into a non-index-1 Hes-
senberg form DDAE. Section III presents several examples and
the corresponding numerical appraisal based on physical NDDE
systems proposed in the literature. Conclusions are drawn in
Section IV.

II. SMALL-SIGNAL STABILITY OF NDDES

This section defines the characteristic equation of (1), con-
sidering the single-delay case. The extension to the multiple-
delay case is straightforward. To simplify the development of
the proofs included in this section, let

g =x(t—7) 2)

be the retarded or delayed state and algebraic variables,
respectively, where t is the current simulation time, and 7
(7 > 0) is the time delay. In the remainder of this paper, since
the main focus is on small-signal stability analysis, time delays
are assumed to be constant.

Based on (2), (1) is rewritten as:

Op,l = f(mv Ly, :'Cv CCd) ) (3)

where f (f : RP — RP) are the differential equations and =
(x € RP) are the state variables. We also assume that (3) is
autonomous, i.e., does not depend explicitly on time ¢. 0; ;
denotes the zero matrix of ¢ rows and j columns.

Since we are interested in the small-signal stability analysis,
we consider only steady-state conditions and we linearize (3)
at the equilibrium point:

0,1 = folx+ fo, Axg+ fu A + f, Axg (4
The characteristic equation of (4) is given by
det A(A\) =0 (5)
where

AN =ANfo+te VMfa)+ fate N fe, (6

is the characteristic matrix [?]. The solutions of (5) are called
the characteristic roots or spectrum.

Instead of solving (6) directly, we propose to solve an
equivalent characteristic equation, which is determined based
on a variable transformation of the original NDDE (3). Let
y =« and f, be full rank, then (3) can be rewritten as:

T =1y (7
Op,l = f(wawd7y7yd) )

which is a set of DDAEs. This is a typical descriptor model
transformation [11].
Differentiating (3) at the equilibrium point leads to:

Az = Ay 3
01’71 = fmAm + fmdAwd + fyAy + fydAyd )
respectively, where f, = f, and fyd = f4,- Note that, if

Iy, # 0, p, then (7) is a set of non-index-1 Hessenberg form
DDAES.

The derivation of the characteristic equation of general non-
index-1 Hessenberg form DDAEs is thoroughly discussed in
[24]. Such DDAEs have the following characteristic matrix:

AN =M, —Ag—e A =Y e A, (9
k=2
where I, is the identity matrix of order p, and based on the
results of [24] and the specific form of (8), one has:

Ag=A, (10)
A =D, (11)
A, =C*'D, k>2 (12)
and
A=—ffo, B=—f,"Fa,, (13)
C=-f,'f,,, D=B+CA

Where f, ! certainly exists as fy = [ is assumed to be full
rank. The assumption that f,, is full rank does not reduce the
generality of the approach proposed in this paper. In fact, if
f: has rank ¢, ¢ < p, (4) can be always rewritten as a set
of DDAEs for which the Jacobian matrix }@ with respect of
a subset of the state variables & € « is full rank. Moreover,
ift f,, is full rank, (4) can be rewritten in an explicit form by

multiplying by —f,:
Az = Ay (14)
0p1 = oAz + fo,Axq — Ay + f,, Ay,
Hence, (13) become:
A=f,,  B=fa, (15)
C:}'yd’ D:}‘wd‘F}yd}w'

The series in (9) converges if and only if ||C|| < 1, where
I - || induced norm, or, equivalently, if and only if p(C) <
1, where p(-) spectral radius of the eigenvalues of a matrix.
Moreover, if p(C) < 1, the matrices Ay, tend to 0, ), as k —
0o. Hence, based on the definition of Ay, in (12), the following
condition must hold:

p(C)=p(fy'fy,,) <1. (16)
which, using the explicit formulation (14), becomes:
p(C)=p(fy,) <1. (17)

The proof of condition (16) is given in Appendix I.

Equation (9) includes a series of infinite terms, which, in
actual implementations, has to be truncated at a given value of
k (see [24]). In the examples given in the following section,
we thus approximate (9) as:

km
AN =M, —Ag—e A =Y e MA, (18)
k=2
where k,,, has to be large enough.

The roots of (18) can be calculated in several ways. How-
ever, the method based on Chebyshev discretization has proven
to be numerically efficient and accurate [23] and will thus
be used in the remainder of this paper. The details of the
Chebyshev discretization approach can be found in [21]. For
clarity, a brief outline of this method is given in Appendix II.



III. CASE STUDIES

This section illustrates the numerical properties of (18)
through a variety of physical systems whose dynamic behavior
can be described by a NDDEs in the form (1). All cases
considered in the remainder of this section are asymptotically
stable without delay. The objectives of the numerical appraisal
are twofold.

1) To define whether and how the magnitude of the delay 7
impacts on the stability of the NDDE. The delay stability
margin is then compared with the results of the papers
from where the examples discussed in the section were
originally proposed.

2) To evaluate the sensitivity of the rightmost eigenvalues
with respect to (i) k,,, i.e., the number of matrices
Ay in (18); and (ii) N, i.e., the number of points of
the Chebyshev discretization grid (see Appendix II). To
illustrate the reliability of the simulations, it is important
to prove that their results converge with the increase of
k,, and N.

With these aims, we consider three examples of NDDEs that are
discussed in the literature to show the accuracy and efficiency
of the approach.

All simulations are obtained using DOME [25]. The
Dome version used for in this case study is based
on Python 3.4.2 ( http://www.python.org ), Nvidia Cuda
7.0, Numpy 1.8.2 ( http://numpy.scipy.org ), CVXOPT
1.1.8 ( http://abel.ee.ucla.edu/cvxopt/ ), MAGMA 1.6.1 (
icl.cs.utk.edu/magma/software ), and has been executed on a
64-bit Linux Fedora 21 operating system running on a two
Intel Xeon 10 Core 2.2 GHz CPUs, 64 GB of RAM, and a
64-bit NVidia Tesla K20X GPU.

A. Food-limited Population Model

The dynamic food-limited population model introduced in
[4] is a scalar nonlinear NDDE in the form of (1):
St—7)+cS(t—7)

I ;o (19

S(t)y=rS(t) |1 -

where 7 and 7 are intrinsic growth rate and the recovering
time, respectively, of species S, and K is the environment
capacity. Parameters r, ¢, K are positive.

The proposed approach allows evaluating the delay-
dependent stability of a stationary solution of (19), i.e., con-
stant population. According to (7), (19) can be rewritten as:

T=y (20)

Td + CYd
0= l1—-—] —v.

This model has two equilibrium points, namely S = 0 and
S = K. Given the physical meaning of this model, only the
stability of the equilibrium point S = K is of interest.
Reference [27] provides a numerical example of the dy-
namic bacteria population model (19), with K =1, and
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Fig. 1: Rightmost eigenvalue of the dynamic population model (19) as a
function of k;, and with 7 = 0.1 s and N = 200.

TABLE I: Number of points N of the Chebyshev discretization grid to obtain
the numerical convergence of the dominant eigenvalues of PEEC (21) with
different 7

7 [s] N CPU Time [s]
0.0005 100 0.2
0.0008 900 20.8
0.001 4,800 2,453
0.005 6,000 5,460

Figure 1 shows the rightmost eigenvalue’s real part as a
function of k,,, and assuming 7 = 0.1 s and N = 200. The
rightmost eigenvalue of this model converges for k,, > 75.
Meanwhile, the imaginary part of the rightmost eigenvalue
pair is null.

Figure 2 shows the variations of the rightmost eigenvalue’s
real part as a function of NN, and assuming 7 = 0.1 s and
ky, = 100. The imaginary part of the eigenvalue is not null for
N < 210. This fact indicates that the Chebyshev discretization
introduces spurious eigenvalues when N is not large enough.
Also in this case, the numerical analysis is required as IV
cannot be fixed a priori.

The rightmost eigenvalues of the dynamic population model
for unbounded constant delay 7 is shown in Fig. 3. The
stability boundary is approximately 7 ~ 14.5 s, i.e., the
quantity of species S is locally asymptotically stable for
7 < 14.5 s. Within the stability boundary, the dynamics
is characterized by oscillations with relatively low damping.
Then for 7 > 14.5 s, the unstable operating point give birth to
limit cycles. Oscillations disappear, however, for high values of
the delay, as both the real and imaginary parts of the dominant
eigenvalue go to zero.

B. Linear PEEC Model

In [7], the authors study the numerical solution of a linear
NDDE circuit through contractivity analysis, considering PEEC
circuit models in the form:

z(t)=Lx(t) + Mz(t—7)+ Nz(t—71), (21)
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n [7], the following parameters are assumed:

20N I
100 -
1 2 -6
M| s
w0 | 0T
—05 —15 0
1'—71 2
N=_ _
-3 9 0],
1 2 -6

With the parameters above, the system (21) is asymptotically
stable for 7 = 1 s according to the analysis result obtained by
contractive continuous Runge-Kutta method. Reference [12]
discusses the very same numerical example and indicates that
the system is stable for 7 < 0.43 s.

According to the numerical tests based on the descriptor
transformed model of (21), the rightmost eigenvalue pair of
(21) converges for k,, > 20. The convergence, in this case, is
obtained for a relatively small k,, as p(IN) = 0.0733 < 1. It
is relevant to note that, as 7 increases, convergence is obtained
at increasingly larger N. The values of N that lead to the
convergence of the rightmost eigenvalue pair with different 7
are shown in Table 1. Note, however, that if N is below the
threshold for which the numerical convergence is attained, the
results are conservative, as shown in Fig. 4.

The real part of rightmost eigenvalue pairs of (21) with
different 7 € [0.1,15] s is shown in Fig. 5, using k,, = 80,
N = 200. It can be observed that the delay stability margin
is over 15 s, which is much larger than the value identified in
[12].

C. Neural Network Model of Neutral Type

This subsection considers the non-linear neutral-type
Cohen-Grossberg Neural Network (CGNN) model [8]:

L0 —05] (=)
—01 0.1 | |da(t—7)

_ d1 (Sﬂl (t)) 0
0 da(22(t)

% 121’1(t) . 2 1 fl(.L'l(t)
121’2(t) 0 2 f2 LCQ(t)
. b11 0.2 fl(xl t* 7' 1
bor  —0.125] | fao(za(t —7) 1
where d;(z;(t)) = 5 + sin(z;(t)) and fi(z;) =
1=1,2.

In [8], the authors discuss the sufficient delay-independent
stability criteria of (22) through the Lyapunov second stability
method. According to [8], if b;; = b2 = 0.25, the neural
network (22) is delay-independently stable at the unique

equilibrium point * = [0.3404,0.2597]T. We can re-obtain
the same conclusion using the proposed small-signal stability

] (22)

) for
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analysis of a DDAE equivalent to (22). Figure 6 shows, in
fact, that the dominant eigenvalues of (22) are never positive

Fig. 6: Rightmost eigenvalues of the neutral-type CGNN (22) as a function
for b1; = b12 = 0.25 and independently from the value of the
delay 7.

of 7 and with k,, = 100 and N = 500

APPENDIX I
CONVERGENCE OF (9)

Next we will prove that the series in (9) converges if and
IV. CONCLUSIONS

only if (16) holds. For asymptotic stable states we have that
le(t — k7)|| < o € R. Then
The paper provides a derivation of the characteristic equa-

IC* " Da(t — k)|l < |C* M| DIl
tion of NDDEs, i.e., differential equations that include delays
in both state variables and their first time derivatives. The
characteristic equation is found by means of a descriptor model
transformation into an equivalent non-index-1 Hessenberg
form DDAE and consists of a series of terms corresponding to
infinitely many delays that are multiples of the delays of the
original NDDE. The condition for the convergence of the series
are also provided in the paper. The paper discusses a numerical This approach consists in transforming the original problem
appraisals based on a Chebyshev discretization method of the  of computing the roots of (18) into a matrix eigenvalue prob-
small-signal stability analysis based on a truncated version of lem of a PDE system of infinite dimensions. The dimension
the characteristic equation previously determined and defines  of the PDE is made tractable using a discretization based on
how the convergence of the series impact on the stability of 5 finite element method. The discretized matrix is build as
NDDEs systems. Simulation results indicate that the proposed  follows. Let Ey be the Chebyshev discretization matrix of
method allows determining precisely the delay stability margin
and, at least for the considered cases, it allows improving the

order N (see [21] for details) and define
results obtained with other stability analysis methods that are
available in the literature.

The series > -, C*~! converges if and only if ||C| < 1.
Hence by using the above inequality and the direct comparison

test for series, the sum Ckle:z:(t — k) and consequently the
series in (9), converges if and only if |C|| < 1.

APPENDIX II
CHEBYSHEV DISCRETIZATION SCHEME

M oI,

— |, @)
AN AN,1 A1 A()




where ® indicate the tensor product or Kronecker product; I,
is the identity matrix of order p; and W is a matrix composed
of the first N — 1 rows of ¥ defined as follows:

© =285/, (24)

and matrices Am ... ,A n are defined as follows.

Let consider first the case for which (1) and, hence, (7)
include only a single delay 7. Then, equation (18) has k,,
delays, with 7 =7 < T < -+ < T, —1 < Tk, = kmT.
Each point of the Chebyshev grid corresponds to a delay ; =
(N — j)Ar, with j = 1,2,...,N and AT =7, /(N —1).
Thus, j = 1 corresponds to the state matrix Ay, , which
corresponds to the maximum delay 7, ; and j = N is taken by
the non-delayed state matrix Ay. If a delay 7;, = ; for some
j=2,..., N —1, then the correspondent matrix Ay, takes the
position j in the grid. For the single-delay case, delays in (18)
delays are equally spaced and, hence, this conditions happens
if N is a multiple of k,,. However, in general, the delays
of the system will not match the points of the grid. Then, a
linear interpolation is considered in this paper, as discussed in
[23]. The linear interpolation allows also to easily extend the
method to the multi-delay case.

Reference [19] shows that the eigenvalues of M are an
approximated spectrum of (18). The number of points N of
the grid affects the precision and the computational burden of
the method, as it is discussed in Section III. In practice, N
cannot be very large, as the size of M would prevent applying
any numerical technique to compute the eigenvalues.
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