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Abstract—Stochastic Differential Algebraic Equations (SDAEs)
are used to model power systems. However, there is no universally
accepted method to properly evaluate the stability of such models.
The theoretical and numerical aspects of the computation of
the largest Lyapunov Characteristic Exponent (LLCE) for power
systems with the inclusion of stochastic processes is discussed
as a method to provide a measure of stability. A semi-implicit
formulation of power systems is employed in order to exploit
parallelism, sparsity and to have low memory requirements.
Three case studies are considered, two based on the IEEE 14-
bus system as well as a 1,479-bus model of the all island Irish
transmission grid.

Index Terms—Lyapunov characteristic exponents (LCEs), sta-
bility, limit sets, stochastic processes, differential-algebraic equa-
tions (DAEs), deterministic chaos, stochastic chaos.

I. INTRODUCTION

In recent years, power systems have undergone major struc-
tural changes due to the desire to promote the use of clean and
secure renewable energy. Wind energy is the fastest growing
renewable energy source for electricity worldwide which has
led to an increase in the volatility and uncertainty present in
power systems. As a result, this has incurred drastic changes
to how power systems are modeled and simulated. Volatility
can be modeled as a set of stochastic processes that, if coupled
with dynamics models, lead to describe power systems as a
set of SDAEs. There is no universally accepted method to
properly evaluate the stability of such models. Hence, the
focus of this research is to addresses this issue by proposing
a computationally viable method to calculate the largest LCE
which can be utilized as a measure of the stability of stochastic
power system models.

Modeling power systems as a set of Stochastic Differential
Equations (SDEs) was first proposed back in the nineties [1].
However, it is only in recent years that methods to study the
impact of stochastic fluctuations on the dynamic response of
power systems have started to be developed [2]-[7]. In these
papers, the common approach to study the stability of power
systems is a Monte Carlo method based on strong solutions
of the SDAEs. This requires a high number of time domain
simulations, b, which is computationally expensive. The Monte
Carlo method is suited to small systems up to a few tens
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of buses but is not suitable to large systems which yield
high dimension SDEs. This paper proposes the application of
Lyapunov theory to study the stability of SDE-based power
system models which reduces the computational burden from b
simulations to 1. The proposed method provides a quantitative
solution to outline if a power system is chaotic. It can be used
by electrical engineers as an aid to design robust transmission
systems as the renewable energy sector grows into the future
and is based on the concept of stochastic chaos.

Lyapunov theory was first proposed in [8] and has been
widely used in the numerical analysis of nonlinear dynamics
since the work of Seydel in [9]. Lyapunov theory is a tool that
can be used to capture the sensitive dependence of a system
to initial conditions. The LCE provides a measure of how two
orbits that start close together converge (or diverge) as time
progresses. Roughly speaking, LCEs relate to the trajectories
of dynamical systems as eigenvalues relate to equilibrium
points. Where eigenvalues indicate the stability of equilibrium
points, LCEs indicate the stability of trajectories.

The main difficulty that limits the widespread adoption of
LCEs to study chaotic motions and stochastic processes for
real world large transmission networks is that such a tool is
computationally expensive. In [10] and [11], various methods
to compute LCEs are proposed but these methods are limited
to linearized models and only small benchmark systems up
to a few tens of buses are considered. The calculation of
LCEs of real-world nonlinear power system models requires
the numerical integration of the variational equation associated
with the original dynamic system. Unfortunately, the size
of the variational equation increases with the square of the
number of state variables of the system. While methods exist
for its computation, from a practical point of view, none are
applicable to high dimensional systems such as real-world
power systems which could have several thousand state and
algebraic variables. Herein lies the novelty of this research, to
develop a computationally efficient method to viably compute
LCEs for power system models of arbitrary size.

The remainder of the paper is organized as follows, in
Section II relevant background information of Lyapunov the-
ory and dynamical systems is presented. In Section III, the
proposed method is explained along with the mathematics that
underpin it. The method discussed in this section is applied
to three case studies in Section IV; one deterministic case
and two stochastic cases. The computationally efficiency of
the proposed approach is illustrated through the calculation of
the LCEs of the 1,479-bus model of the all-island Irish grid



including stochastic wind speed fluctuations. Finally, Section
V draws conclusions and outlines possible areas of future work
in the field.

II. LYAPUNOV THEORY

This section provides some basic background and defini-
tions of dynamical systems that are relevant for chaotic mo-
tions and describes the rationale and practical implementation
of LCE:s.

Lyapunov exponents are a quantitative method that captures
the sensitive dependence of systems to initial conditions. They
provide a measure of how two orbits that start close together
converge or diverge as time progresses. Diverging orbits are
termed chaotic orbits and, in this work, the definition of chaos
provided by [12] will be used; a dynamical system is chaotic
if it has a positive Lyapunov exponent.
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Figure 1: Divergence of two orbits starting from nearby initial points.

Let us consider a set of nonlinear Ordinary Differential
Equations (ODEs) in the form:

& = h(z), (1

where x, x € R"™ is the state vector at time ¢ and h is smooth.
Consider two nearby points o and xy+ug in the phase space
M, as illustrated in Fig. 1, where ug is a small perturbation
of the initial point x(. After time ¢, their images under the
flow will be ¢(xo,t) and ¢p(xp + uo,t) and the perturbation
u(t) is defined as:

u(t) = ¢(xo + uo,t) — ¢(xo,t) = ¢, (To,t) - uo, (2)

where ¢_,(x,t) is the gradient of ¢ with respect to xo. The
average exponential rate of convergence (or divergence) of the
two trajectories is defined by:
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where ||u|| is the norm of the vector w. The number A is
termed the LCE and is indicative of the stability of the system.
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Under weak smoothness conditions on the dynamic system, the
limit (3) exists and is finite for almost all points o € M and
for almost all tangent vectors ug and it is equal to the largest
LCE, A1 [13]. If the largest LCE is positive, the nearby orbits
exponentially diverge. These are termed chaotic orbits.

For a continuous-time dynamical system (1) and an initial
point xg, the tangent vector w(t) defined in (2) evolves in time
satisfying the so called variational equation [14]:

(ﬁ(w()?t) = J(d)({l}oﬂf)) : (ﬁ(w07t)7
where ®(x,t) is the derivative with respect to xg of ¢(t)
at xg i.e. ®(xo,t) = ¢, (xo,t) and is termed the fransition
matrix. Equation (4) is a linear time-variant differential equa-
tion whose coefficients depend on the evolution of the original
system (1). Hence, in general, (4) can be solved only together
with (1), as follows:

i e R S e
®|  |J(x)|’ ®(tg)| |In

where J is the Jacobian matrix of h(z). The application of
traditional integration techniques to the variational equation
typically leads to all solutions converging to the largest LCE.
In this work, the largest LCE is sufficient to define the

asymptotic behavior of a dynamical system. The largest LCE
A1 can then be estimated by applying (3):

P(x,0) =1, 4
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where ug is a randomly generated vector of order n. There
are three situations to consider for Ai:

e A1 < 0: The flow is attracted to a stable fixed point or
stable periodic orbit.

e A1 = 0: The orbit is a neutral fixed point.

e A1 > 0: The flow is unstable and chaotic.

Negative Lyapunov exponents are characteristic of dissipative
or non-conservative systems. Note, bounded infinite trajec-
tories that do not converge towards a fixed point are char-
acterized by at least one zero LCE which corresponds to
a perturbation of the phase point along its own trajectory.!
This certainly happens for SDAEs with bounded trajectories.
Hence, the largest LCE satisfies the condition A\; < 0 for non-
chaotic orbits.

III. LCES OF DIFFERENTIAL ALGEBRAIC EQUATIONS

The determination of the largest LCE is relatively straight-
forward for ODEs. However, power system models for tran-
sient stability analysis cannot be formulated as ODEs. Typi-
cally, they are modeled as a set of explicit nonlinear Differen-
tial Algebraic Equations (DAEs) [15]. However, in [16], the
author proposes a novel semi-implicit model of power systems,
that is more general and less computationally demanding than
the explicit model. The semi-implicit model is as follows:

R OJ[O0] |g=y |’
where , x € X C R" are the state variables; y, y € Y C R™

are the algebraic variables; f : X' x) — R" is the vector field;
and g : X x Y — R™ are the algebraic constraints.

'Power system models also show an additional vanishing LCE due to the
constant motion of the synchronous speed reference which is used to define
the rate of change of rotor angles of synchronous machines.



In this paper, for simplicity but without loss of generality,
we assume that T and R are time-invariant and very sparse.
The time-variant case can be deduced from the developments
below. Apart from numerical properties, which are extensively
discussed in [16], the main advantage of the formulation
in (7) is that T" might not be full rank which allows the
imposition of an infinitely fast dynamic response to some
state variables. This approach greatly reduces the number of
operations to compute equations and elements of the Jacobian
matrix of the DAE, increases the sparsity of the Jacobian
matrix and allows effortless switching between state variables
and algebraic variables. The proposed method can be extended
to other topologies.

The key difficulty with assessing the LCE of power systems
is determining the transition matrix ® (o, t). Consider a DAE
of the form:

T2 (1) = W(=(t)) (8)
where

r:{ },z:[cg}and‘ll(z):{

The generic solution to (8) is:

T 0
R 0

() = / W(z(r), 7)dr + Tz(0)
0

Expand W¥(z(7),7) using the Taylor series expansion about
the trajectory X (t; x):

ow
W(z(t),t) = w(x(t),t)+

5s (2(1) =x (1)) + Ra(2)

z=x(t)

where Ry(z) contains higher order terms that are nonlinear.
Only considering first order terms:

() = / T (x(r), 7)dr + / T(m:2)(7(1) — x(r))dr
0 0

where J(7;x) is the Jacobian matrix of W. Letting {(t) =
y(t) = x(t):

t

ro(t) = [ Frxcr + T¢(0) ©
0
Note that (t) is the solution of the differential equation:
¢ =J(t:x)S (10)
The solution to (10) is:
¢(t) = @(t,0;x)¢(0) (11)

where ®(t,0;x) is the state transition matrix for (11).

If an implicit integration scheme is utilized, which is highly
recommended due to the stiffness of power system models
(see, for example, [17] and [18]), the Jacobian matrices
required to compute P are already available because these are
needed to integrate the DAE. Moreover, since the variational
equation is linear, one can implement the explicit expression

to integrate such an equation. For example, using the implicit
backward Euler method with a time step of At, (10) becomes:

T¢(AL) = ¢(0) + AtT (x (A1) (AL)

(At) = [T — AtT(x(At))]7'¢(0) (12)
and
k
(kAL) = H[F — AtT(x((k — i+ 1)AL)]7'¢(0)  (13)

Thus, the state transition matrix in (11) is therefore given by:
k
B(kAL0;x0) = [[IT — AtT(x((k — i+ 1)A)] ™" (14)
i=1
In the next section, we will demonstrate the computational
viability of the proposed approach to determine the transition
matrix and the largest LCE for power systems.

IV. CASE STUDIES

This section presents three case studies. Subsection IV-A
focuses on the IEEE 14-bus system, which is known to
show a deterministic chaotic behavior for sufficiently high
loading levels [19]. The IEEE 14-bus system with the inclusion
of noise in the load power consumption is considered in
Subsection IV-B to define the behavior of LCEs for non-
deterministic chaotic motions. Subsection IV-C considers the
all-island Irish transmission system. This is a large real-world
network where the computational burden of the variational
equation would typically restrict the calculation of LCEs. The
computational viability of the proposed method is outlined
here.

All simulations are obtained using Dome, a Python-based
power system software tool [20]. The Dome version utilized
in this case study is based on Python 3.4.3; ATLAS 3.10.2 for
dense vector and matrix operations; CVXOPT 1.1.8 for sparse
matrix operations; and KLU 1.3.6 — included in SUITESPARSE
4.5.1 — for sparse matrix factorization. All simulations were
executed on a 64-bit Ubuntu 14.04 operating system running
on a § core 3.60 GHz Intel Xeon with 12 GB of RAM.

A. IEEE 14-bus System - Deterministic Chaos

The IEEE benchmark network consists of 2 synchronous
machines and 3 synchronous compensators, 2 two-winding and
1 three-winding transformers, 15 transmission lines and 11
loads. The system also includes primary voltage regulators
(AVRs) and a PSS connected at machine 1. All data of the
IEEE 14-bus system as well as a detailed discussion of its
transient behavior can be found in [15].

The system includes 63 state variables, of which only 52
are associated to non-null time constants, and 84 algebraic
variables. Null-time constants are associated to synchronous
machine stator fluxes, ¢sq and 1,,, and the variable eél whose
time constant, Téo, is null for the machine connected at bus
1. Hence in (7) n = 63 and m = 84.

In [19], the authors show that increasing the loading level
of the IEEE 14-bus system without PSS leads to a Hopf bi-
furcation followed by a series of period-doubling bifurcations
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Figure 2: (a) Synchronous generator 2 speed (b) Poincaré section for wy and
we for K, = 0.5.

that eventually leads to the appearance of chaos. It is also
shown that chaos can be eliminated by including the PSS if a
proper PSS model with an accurate tuning of the parameters is
implemented. However, if the PSS is not properly tuned, it is
possible that the PSS may trigger a series of Hopf bifurcations
leading to chaos.

Consider the case when K, = 0.5, the PSS is not properly
tuned and the system is oscillating, Fig. 2 (a). It is clear that
the output is a limit cycle with a period of T" = 0.653 (s).
One conventional method to assess the behavior of oscillating
systems is a Poincaré section; two state variables are sampled
at a frequency f and plotted against one another. Figure 2 (b)
shows the Poincaré section where w; and ws, rotor speeds 1
and 2, are sampled at f = 1/0.653. Since the system oscillates
with the same period as the sampling frequency a single point
is visible on the Poincaré section which is indicative of a stable
limit-cycle i.e. the system is not chaotic.

Now consider the case when K, = 50, the PSS is not
properly tuned and the system is wildly oscillating, Fig. 3 (a).
Unlike Fig. 2 (a), it is difficult to visually determine whether
the output is periodic or aperiodic. However, the Poincaré
section reveals that the output is aperiodic as output generates
a fractal pattern on the Poincaré map which is indicative of
chaos. In this instance, it cannot be determined if the orbit is
chaotic or a quasi-periodic; the motion is associated with a
finite number of frequencies that are related to one another by
irrational multiples.

While Poincaré sections are useful to determine the type
of behavior of deterministic systems operate with, they offer
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Figure 3: (a) Synchronous generator 2 speed (b) Poincaré section for w; and
wo for K, = 50.

little insight into the stability of higher order orbits. We will
now consider the largest LCEs for both K, values.
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Figure 4: Largest LCE of the IEEE 14-bus system with K, = 0.5 (red) and
K., = 50 (black)

Figure 4 shows the largest LCE for the IEEE 14-bus system
for the two values of K,,. In red, with K, = 0.5, the system
operates with a limit cycle with a period of T' = 0.6533
(s), the largest LCE settles to 0. This is the expected value
for the largest LCE as the system is not operating in the
chaotic region. However, when K, = 50, the largest LCE
settles to 0.2 i.e. a positive number which is an indicator of
chaos. Unlike the Poincaré section, this quantitative measure
acts as a binary measure as to whether the system is chaotic
or not. When stochastic systems are considered, qualitative
measures are not applicable as plots will appear random and
thus, chaotic. There is no way to qualitatively determine if
these systems are chaotic.
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Figure 5: Flow of the state space of rotor speeds of machines 1 and 5 for (a)
scenario 1 and (b) scenario 2.

The CPU simulations time to calculate the largest LCE
is 5 (s) with K, = 50. The total simulation time is 54
(s). Therefore, the calculation of the LCE increased the total
simulation time by approximately 10 %. The simulations used
a fixed integration step of At = 0.01 (s). However, this is a
small benchmark system with no stochastic perturbations. We
will now consider the effect of stochastic perturbations on the
computational burden of the LCE.

B. IEEE 14-bus System - Stochastic Chaos

This subsection discusses the effect of noise on the dynamic
behavior of the IEEE 14-bus system. Noise is modeled as
Ornstein-Uhlenbeck (OU) process as discussed in [6]. This
is a Wiener process characterized by a normal distribution,
exponential autocorrelation and constant standard deviation.
The parameters of the OU processes of the loads are the
same as those considered in [7]. The following scenarios are
considered.

o Original system with 5 synchronous machines and two

primary frequency regulators at generators 1 and 2 (see
Fig. 5 (a)).

« A wind power plant substituting the synchronous genera-
tor at bus 2; only the generator at bus 1 includes primary
frequency regulation (see Fig. 5 (b)).

Figure 5 illustrates the flow of the state space of rotor
speeds 1 and 5 for both scenarios. Unlike the Poincaré sections
in Section IV-A, these diagrams offer little insight into the
stability of the system. Since the system is operating with
stochastic loads, the flow in the state space appears to be

random and therefore has the appearance of chaos. There
is no method to select a sampling frequency and to plot a
Poincaré section so as to filter out the stochastic perturbations.
As a result, conventional qualitative deterministic methods are
not applicable to stochastic situations. In both scenarios, the
trajectories of the machine rotor speeds appear to be similar.
There are no major differences. For this reason, the largest
LCE is proposed as a method to study the stability of stochastic
power systems as it is a quantitative method and not open to
subjective interpretation. This provides a method to distinguish
between the two modes of operation
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Figure 6: Largest LCE of the IEEE 14-bus system for (red) scenario 1 and
(black) scenario 2.

Figure 6 shows the largest LCE for both stochastic sit-
uations. With all the synchronous machines connected, the
largest LCE settles to 0 and indicates a stable system. For
the second scenario, when wind is introduced, the system has
a positive LCE and is unstable. It is to be expected that the
more regulation that is present in a system, the more robust a
system is. The evaluation of the LCEs provides a quantitative
measure of such robustness. Thus, subjective interpretation
using qualitative approaches are not required. This section
demonstrates the promising tool of LCEs to define the impact
of stochastic processes on the performance of power system
controllers.

C. All-Island Irish Transmission System

In this final case study, the all-island Irish transmission
system set up at the UCD Electricity Research Center is
considered. The model includes 1,479 buses, 1,851 trans-
mission lines and transformers, 245 loads, 22 conventional
synchronous power plants with AVRs and turbine governors,
6 PSSs and 176 wind power plants. The topology and the data
of the transmission system are based on the real-world system
provided by the Irish TSO, EirGrid. However, dynamic data
is estimated and is based on the authors knowledge of the
technology of power plants. Hence, simulation results, while
realistic, do not represents actual operating condition of the
Irish transmission system.

The main purpose of this section is to highlight the com-
putational viability of the proposed method for computing the
largest LCE for a large system. The system includes 2,112
state variables, of which 2,064 have non-null time constants,
and 6, 338 algebraic variables.
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Figure 7: Largest LCE for the all-island Irish system.

The system is simulated for 1500 (s) with a time step of 0.01
(s). The simulation takes 4 minutes and 35 seconds without
the calculation of the variational equation and the largest
LCE. Figure 7 shows the largest LCE is stable for the Irish
transmission system. The calculation of the largest LCE takes
an additional 5 minutes and 42 seconds. This approximately
doubles the simulation time for the system.

This section has highlighted the feasibility of using LCEs
to quantify chaos in large power systems of arbitrary size. The
main advantages of the proposed approach compared to Monte
Carlo based methods are as follows:

o Computationally efficient: this work has demonstrated
that the proposed method is computationally viable and
efficient for power systems of arbitrary size. Monte Carlo
based methods require a high number of simulations to
be performed for statistical accuracy. The calculation of
the largest LCE requires one.

« Binary result: the largest LCE is a single number which
can be used to determine whether the system is stable or
chaotic.

o Robust: Monte Carlo based methods rely on statistical
accuracy which does not guarantee that all possible
dynamics are captured even if b is high. Lyapunov theory
does not suffer from the same constraint.

However, it is important to note that the largest LCE is
limited in its approach. Monte Carlo based methods can also
be used as a qualitative tool to assess whether power systems
are chaotic. They have one key advantage compared to the
largest LCE, they can provide other insights into power sys-
tems such as the statistical information outlined in references
[2]-[7]. The largest LCE gives a measure of the stability of the
system but requires further simulations to gain more insights.

V. CONCLUSIONS

This paper highlights the key issue stopping the widespread
adoption of the largest LCE as a stability measure for both
deterministic and stochastic chaotic motions in power systems
as the computational burden associated with the variational
equation for real-world power systems. The size variational
equation is equal to the square of the number of state variables
in the system. Historically, this has been a prohibitive size as
the computational burden is too great to warrant its inclusion.

The main contribution of this paper is to provide a compu-
tationally viable method to estimate the largest LCE for power

systems through the use of semi-implicit SDAEs, by proposing
a method to efficiently calculate the transition matrix. This
contribution was highlighted using three case studies to study
the calculation of LCEs for both deterministic and stochastic
power systems as well as demonstrating its effectiveness for
large real world power systems through the all-island Irish
transmission system.
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