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Abstract—This paper proposes a simple yet accurate least
square method to identify the equivalent inertia constant of
individual inertia providers. The proposed method requires
ambient measurements and is based on the well-known classical
swing equation of synchronous machines. The proposed method
shows a very good accuracy for the inertia identification of the
rotational and virtual inertia in different operating conditions,
including stationary ones, and can also be used to quantify the
inertia support effect of the time-varying adaptive inertia.

Index Terms—Inertia constant identification, frequency con-
trol, frequency stability, virtual inertia.

I. INTRODUCTION
A. Motivation

The ongoing move from Synchronous Generator (SG) to
Inverter-Based resources (IBRs) is expected to reduce the
ability of the system to cope with frequency variations and,
in effect, power unbalances, due to the loss of the rotational
inertia [1]. In this context, a variety of virtual inertia control
schemes has been developed to enforce the IBR to mimic the
SG mechanism for the purpose of providing a fast frequency
support and emulating the inertial support of SG [2].

The concept “equivalent inertia constant” is used to quantify
the ability of the inertia response from both the SG and IBR
to counteract the variation of the Rate of Change of Frequency
(RoCoF) in the system [3]. This kind of control is incentivized
by market mechanisms that are currently under discussion by
Transmission System Operators (TSOs) around the world. For
example, the Chinese government has recently announced that
the “inertia market” should be developed along with the IBRs-
leading power system. This inertia market includes both rota-
tional [4] and virtual inertia [5] and may contribute to improve
the system stability, as well as reduce carbon emissions. This
paper tackle precisely this identification problem and proposes
a simple yet highly reliable method to estimate the equivalent
inertia constant based on measurements currently available to
TSOs.

B. Literature Review

In order to form an efficient inertia market and properly
reward the inertia provision by IBRs, TSOs will need a method
to accurately detect and identify the equivalent inertia constant
of the devices connected to the grid. A variety of on-line
inertia identification approaches has been proposed in recent

years [6]-[9]. These methods are based on the assumption
of the availability of Phasor Measurement Units (PMUs)
data, which are currently widely utilized by TSOs. These
approaches, however, require the occurrence of events that
trigger a significant variation of the frequency at the nodes of
the grid. Another feature of these methods is that they focus
on obtaining a fast estimation but, depending on the transient,
they might not be accurate.

On the other hand, the inertia market is more likely to re-
quire accurate inertia information of each IBR under different
operating conditions, rather than instantaneous estimations of
their inertial response. In this vein, [10]-[13] propose inertia
identification approaches based on ambient measurement data
and recursive techniques by introducing hypothesis models of
the inertia provider. The accuracy of these approaches, how-
ever, highly rely on the accuracy with which the parameters
of the model of the device under estimation. These parameters
need to be tuned case by case. With this aim, various tech-
niques including modal analysis [10], [11], dynamic regressor
extension [12] and variable-order polynomial fitting [13], have
been proposed.

C. Contribution

This paper proposes an ambient measurement data-driven
inertia identification method based on the Rate of Change of
Power (RoCoP) estimation technique provided in [9], [14],
[15]. The proposed approach has two advantages: (i) it works
for a variety of operating conditions, including stationary
ones; and (ii) it is independent from the device and, in fact,
it can be used to quantify the virtual inertial response of
non-synchronous devices. This technique, thus, appears to
potentially fit better future inertia market than the existing
methods.

D. Organization

The remainder of the paper is organized as follows. Section
II reviews the concept of the equivalent inertia constant and
the existing inertia identification formula provided in [9], [14].
Section III proposes a least square method for inertia constant
identification based on ambient measurement data. Section IV
validates the proposed method for both rotational and virtual
inertia for various scenarios. Finally, conclusions are drawn in
Section V.



II. ESTIMATION OF EQUIVALENT INERTIA CONSTANT

A. Rotational Inertia

Rotational inertia is a property of the SGs, which store
kinetic energy through their rotating shafts. This kinetic energy
is naturally utilized by synchronous machine to compensate
power imbalances. The well-known swing equation [16] de-
scribing the motion of SGs originally defines the equivalent
inertia constant, in per unit, is as follows:

Msa Wsa = Pm,SG — Pe,SG — PD,SG > (D

where wgg is the angular frequency of the synchronous
machine, p,, s¢ and p. sq are the mechanical and electrical
power; pp s is the active power variation due to damping
effect, and:

pp.sc = Dsa(warida — wsa) 2

where Dgg is the damping coefficient; and Mgg is the
mechanical starting time of SGs and is measured in seconds.
Dge < Mgg always holds for synchronous machines. The
starting time Mgq is linked to the inertia constant of the
machine, as follows:
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where Hpp is the equivalent inertia constant, Jgrr is the
rotational inertia, and w, and S, are the nominal angular
frequency and the nominal power, respectively, of the SG.

In (1), pe,sc can be measured directly; wsg can be ac-
curately estimated through the bus frequency measured by
PMUs [17]; while for all kinds of inertia provider, p,, can
not be measured directly and the estimation approach is also
missing. Therefore, to solve Hgp through (1), one has to
cope with the effect of p,,, and pp sc. References [9], [14]
provide an elegant solution by firstly splitting the p,, into three
components:

Pm = puc + PprC + PSFC , €]

where pyc is the power set point obtained by solving the
unit commitment problem; pppc and pgpc are the active
power regulated by the Primary Frequency Control (PFC) and
Secondary Frequency Control (SFC) correspondingly.

Then, differentiating (1) and substituting (4), one obtains:

2HR1 Wsa = puc + PPFC + PSFC — Pe,sc +Pp,sa s (3)

where p., abbreviated as RoCoP, can be estimated through
PMUSs measurements [18], [19]; the time derivative of RoCoF,
namely @, can be obtained through the PMUs measurements
with a PI filter [9].

In (5), puc = 0, psr¢ = 0 and ppsac <K Pe,sa,
pprc <K Pe,sq always hold within the period between the
rescheduling of generations, i.e., in the time window that
characterizes the inertial response of the generator. Thus, for
proper time window, one can expect that:
_DPesa

Wsa

QHRI ~ (6)

A detail discussion about the time window for inertia identi-
fication is provided in Section III-A.

B. Virtual Inertia

The implementation of controllers able to provided virtual
inertial support through IBRs has been under intense inves-
tigation in recent years. Provided that the IBR has an active
power reserve, the “virtual inertia” is a control scheme that
mimics the SG transients on the frequency support:

De,IBR = Puc + PprC + Psrc + pvi — Pp,ir, (1)

where py1 is the power boosted by the virtual inertia:

pvi = —2Hv1wiBR - ¥

Equations (7)-(8) indicates that Hv can also be estimated
through (6). Since the virtual inertial support is the results
of a control action, Hy can be adaptively tuned, through
proper measurements of system states, in order to better coun-
teract with the frequency deviations following a contingency
[20]. With this regard, the on-line inertia estimation approach
proposed in [9] can track the time-varying adaptive Hvr.
For inertia markets, however, an “equivalent inertia constant”
should be defined to price the inertia support of the time-
varying inertia. The proposed technique presented in Section
III provides a potential solution to identify the equivalent
constant of the adaptive virtual inertia, as discussed in Section
II-B.

III. LEAST SQUARE INERTIA CONSTANT IDENTIFICATION

A. Time window for inertia identification

Figure 1 shows a typical frequency dynamic behavior of a
power system with high IBR penetration.
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Fig. 1. Frequency dynamics of a power system with high IBR penetrations.

In Fig. 1, Tihertia indicates the inertial response period
following a frequency event; Tprpc and Tspc are the time
scales of PFC and SFC; and the red rectangles are the suitable
time windows for the identification of inertia through the
formula (9). The rationales behind these time windows are
the following.

1) Normal operating condition with continuously small dis-
turbance: In practice, power systems are continuously subject
to small disturbances arising from the stochastic variations of
loads and renewable IBRs [21]. In normal operating condi-
tions, the power system suppresses these stochastic dynamics
mainly through the filtering effect of the inertial response



of synchronous machines. In this scenario, since frequency
deviations are within the deadband of the frequency control,
psrc = pprc = 0 holds. Moreover, the time window utilized
in the propsed estimation of the inertia is long enough to make
the proposed estimation robust with respect to ambient noise
and other fast fluctuations.

2) Inertial response period following a frequency events
within the deadband of PFC: This time window is charac-
terized by relatively large & and p. and, thus, the impact
of measurement noise on the inertia identification can be
mitigated compared to the normal operating condition. Figure
1 shows that the inertial response and conventional PFC
period are partly overlapped. However, the time scale of PFC,
especially that procided by non-synchronous devices, cannot
be defined exactly as there exist both slow, fast and very fast
PFCs. As a rule of thumb, the estimation time window has to
be long enough to carry out an accurate inertia identification,
while short enough to avoid the impact of conventional PFC.
Fast PFCs will likely overlap with the estimation, thus being
accounted for as “virtual inertia.” Finally, very fast PFC will
be filtered out by the windowing technique.

Note also that we assume that the estimation time window is
shorter than the dispatch period of the generators. In any case,
the TSO is aware of when generation dispatch changes occur
and, thus, they can discard the estimations at those times.

B. Problems of Existing Formula

Equation (6) indicates that the equivalent inertia constant
can be identified through the ambient measurements of the
inertia provider. In practical applications and when considering
real-world data, the inertia estimation formula (6) needs to be
modified to cope with measurement errors. With this aim, (6)
can be rewritten as:

P pet&
PR

9

where the superscript * denotes the measured/estimated value
and ¢ indicates measurement errors.

While mathematically correct, (9) cannot be applied as is.
The following are relevant numerical and practical issues:

e When &* — 0 (notably, in quasi-steady-state conditions),
the effect £, will be dramatically amplified through the
infinitesimal denominator, and result in a severe error in
the estimation of M ™.

o The conditions pprc <K Pe and pp <K p. might not
be always satisfied. This is, in particular, an issue for
selecting the time window locating following a frequency
event.

C. Data-based Least Square Method

This subsection presents the proposed Least Square Method
(LSM) for the inertia identification based on (9) and proper
time-windowing of the measurements, which is implemented
to mitigate the potential estimation discussed in subsection
1I-A.

According to (9), for the measurement data obtained at time
t;, one has:

(,
HijzL.f )
2)(t)]

where the absolute values of p* and w* are considered for
simplicity but without loss of the relevant information.
It is convenient to rewrite (10) as:

(10)

20w (t)| H = [p"(t:)| ~ 0. (11

For a set of measurements t1,ts,...,tN_1,tn, One can define

the following vectors:

A =20 ()], @ (t2)], -y &% (Env—al), & (E)]T
b= [Ip*(t), [p*(t2)l, -, [P*(En-1)], [Pt

where T denotes the matrix transposition; A and b are the
matrices consisting of the data @* and p* collected within
the time window [t1,tx], the data size N of each matrix is
decided by the length of the time window 7 = ¢ty — ¢; and
the sampling rate of the PMU.

We propose the following LSM to find M*:

Minimize (AH* — b)?, (12)
which admits the well-known solution:
H*=(ATA)1ATp. (13)

Equation (13) is the sought expression to identify the
equivalent inertia constant. Note that to avoid ill-conditioned
ATA, it is convenient to condition its diagonal elements with
small diagonal elements. In the test that have been solved when
preparing this work, we have utilized ¢ = 107% to prevent
AT A to be singular.

The proposed LSM can mitigate the impact of the issues
discussed in Section III-B by properly selecting the time
window during which the measurements of &* and p* are
collected. To further reduce numerical issues, in the case study
presented below, we filter the measurement data by removing
all pairs (|&0*], |p*]) for which |&*| < 10~ pu(Hz)/s? and the
2% the most extreme outliers.

It is important to note that the proposed technique, unlike
the on-line inertia estimation method proposed in [9] that
can track the time-varying inertia, is expected to return an
“average” value of the equivalent inertia constant within a
given time window.

IV. CASE STUDY

This section validates the proposed LSM technique with a
modified version of the WSCC 9-bus system [16]. The SGs
connected at bus 1 and 3 are replaced by a virtual inertia
provider, i.e., a Virtual Synchronous Generator (VSG), and
a Wind Power Plant (WPP) that provides little inertia to the
system, as shown in Fig. 2. The modified system has a 75.6%
non-synchronous power generation.

The bus frequency and the output active power of each
inertia provider are measured with PMUs with sampling rate



50 Hz. The &* and p* are obtained using the technique
based on PI filters that is described in [9]. All simulations
presented in this case study were obtained using the Python-
based software tool Dome [22].
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Fig. 2. Modified WSCC 9-bus system.

A. Identification of Rotational Inertia

The SG has Hgg = 23.64 MWs/MVA, Dgcz = 1.0
MW/MVA. In this subsection, noise is modeled as an Ornstein-
Uhlenbeck stochastic process and is added to each mea-
surements [23]. The dynamic wind speed of the WPP is
modeled as a Weibull distribution with exponentially decaying
autocorrelation [24].

In normal operating conditions, the power system is affected
by continutous wind and load fluctuations. For illustration,
Fig. 3 shows the trajectories * and p* for a 10 s time window.
These are obtained assuming the knowledge of Hgi. This
figures indicates, qualitatively at least, that the assumptions
made to obtain equation (9) are well satisfied in this scenario.

Time [s]

Fig. 3. Dynamic trajectories of SG of the modified WSCC 9-bus system in
normal operating conditions.

The equivalent inertia constant identification results of the
SG with different length of the time window (recorded as 1)
are shown in Fig. 4. According to this figure, the proposed
inertia identification technique is relatively accurate in normal
operating conditions for time windows above 3 s, with the
relative error distributed in the range [0.7,2.51] %.

2B
s o

N
5
[
7
H
i
H
°
v
H
i
1
°
v
\
\
\
\
\
o
°

Relative Error(%)

g &
°

Tis) 2.0 3.0 4.0 5.0 6.0 8.0 100 20.0 300 50.0 100.0

5 233 2330 2347 23.24 2321 822 23.05 2323 23.09 2321 23.16
[MWs/MVA]

Fig. 4. Equivalent inertia constant identification results for the SG in normal
operating conditions.

Next, we consider the transient response of the modified
WSCC 9-bus system following a large disturbance, namely a
sudden load increase at bus 5, occurring at ¢ = 0.1 s. The
transient behavior of the SG following the disturbance are
shown in Fig. 5.
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Fig. 5. Trajectories of the SG of the modified WSCC 9-bus system following
a sudden load increase.

Figure 6 shows the results of the proposed inertia identi-
fication for the SG for different time windows following the
occurrence of the disturbance. The time windows with length
€ [0.3,15] s are long enough to identify the equivalent inertia
constant of the SG through the proposed LSM with satisfied
accuracy, namely relative error smaller than 1%. Figure 5 also
indicates that the effect of the measurement noise are less
evident compared to the normal operating condition scenario
shown in Fig. 3, and thus the accuracy of inertia identification
increases.
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Fig. 6. Equivalent inertia constant identification results for the SG following
a sudden load increase.

B. Virtual Inertia Identification

In this section, we consider the inertia identification of the
VSG at Bus 1 with different virtual inertia techniques, namely
the constant virtual inertia control discussed in [2] and the
adaptive virtual inertia control discussed in [20]. Note that,
since the accuracy of the proposed LSM has been validated in
the example discussed in Section IV-A, this section focuses on
presenting the inertia identification of the time-varying inertia.
For simplicity, noise is not considered in the simulations
discussed below.

For constant virtual inertia, Hy; = 20 MWs/MVA, the
adaptive virtual inertia has the same Hvp during the normal
operating condition and varies corresponding to the RoCoF
following frequency events. The plots of Fig. 7 show the
trajectories of the VSG following the sudden load increase.
The adaptive inertia allows extra support with the constant
inertia control and slightly improves the overall frequency
response of the system.

Figure 8 shows the results for the identification of constant
and adaptive virtual inertia within the 15 s time window fol-
lowing the occurrence of a sudden load increase. For constant
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Fig. 7. Trajectories of the modified WSCC 9-bus system with different virtual
inertia provider. Upper panel: trajectories of H<yy, lower panel: trajectories of
the frequency of Col.

inertia, the LSM returns H7, ione vi = 20.02 MWs/MVA,

which has a relative error of only 0.1%. The right panel
of Fig. 8 shows that all data pairs are distributed closely

to the Hy ionevi- On the other hand, for adaptive inertia,

the distributions of the data pairs are more scattered and
the H} = 23.9 MWs/MVA. The H} 1 18

ad_aptive,VI . qdaptive,V
19.3% bigger than H, ... v1- These results indicate that the

(o)
proposed technique can be used to quantify the extra inertia

support from the adaptive technique.
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Fig. 8. LSM-based inertia identification results for the VSG with different
virtual inertia techniques.

V. CONCLUSIONS

This paper proposes an LSM problem that builds on top of
the inertia estimation formulas presented in [14] and is able to
solve the numerical issues that affect such techniques. The pro-
posed approach is adequate for the estimation of the equivalent
inertia of both rotating machines and virtual inertia providers
through ambient measurement data. Simulation results show
that the proposed inertia identification approach has a high
accuracy for time windows of the order of 1 s under various
operating conditions, including stationary normal operation.
The proposed technique can also be utilized to quantify the
“average” inertia support from a time-varying inertia control.
Thus, the proposed approach appears as an useful tool to
provide information on the availability of inertia for the
coming inertia market. Future work will aim at improving
the LSM-based estimation using, for example, Tikhonov’s or
Lassos’ methods.
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