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Abstract—The paper focuses on the ability of decentralized
wide area power system stabilizers to damp inter-area oscillations
when fed with rotor speed estimations of remote synchronous
machines. Rotor speeds are estimated by means of the Frequency
Divider Formula (FDF), which has been recently proposed on
the IEEE Transactions on Power Systems by the second author.
Different remote signals, namely rotor speeds and the frequency
of the Center of Inertia (COI) are compared with bus frequency
estimations using the well-known two-area test system. The
impact of realistic communication delays on the damping of the
oscillations is also discussed.

Index Terms—Inter-area oscillations, wide area signals, fre-
quency divider formula, phase-locked loop, time delays, modal
analysis, transient stability.

I. INTRODUCTION

A. Motivation

The control of electric energy systems involves the solution
of several practical issues, especially when measurement sig-
nals need to be transmitted over different areas. These issues
include the choice of a proper control strategy, the selection
of actuators and remote feedback signals, and the assessment
of the impact of time delays, e.g., through modal analysis.
This work focuses on the estimation and utilization of remote
signals such as rotor speeds of synchronous machines and the
frequency of the Center of Inertia (COI) for the purpose of
wide area damping control.

B. Literature Review

Inter-area oscillations occur in interconnected power sys-
tems when a group of coherent synchronous machines in one
area oscillates with respect to a group in another area. The
natural frequency of such oscillations is typically in the range
of 0.1-1 Hz [1]. Inter-area modes are associated with the
dynamics of power transfers [2] and hence, their importance
has grown in recent years due to increasing power exchanges
among national grids.

The conventional approach of installing a Power System
Stabilizer (PSS) with local measurements is not adequate
for damping inter-area modes [3]. Remote signals with high
observability have been proven to be effective to damp such
oscillations [2], [4]. These signals can be obtained through
measurement units and transmitted to the Wide Area Damping
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Controller (WADC) through a communication network [5].
The mediation of the communication network in remote signal
transmission introduces stochastic and quasi-periodic delays
[6], [7].

A critical aspect of WADCs is the selection of the
most effective stabilizing signals. The geometric observabil-
ity/controllability method is a simple approach that allows de-
termining the signals with maximum robustness and best per-
formance [8]. Regarding frequency-based wide area signals,
the differential rotor speed of two synchronous machines from
different areas is widely utilized in literature. For example,
relevant references are [4], [9]. Other signals that have been
proposed are the frequency at synchronous machine terminal
buses [10], and the frequency of the COI of a remote area
[11].

While rotor speed signals can be easily obtained in simula-
tions, only bus frequency estimations are available in practice,
e.g., through the Phase-Locked Loop (PLL) devices of phasor
measurement units (PMUs). To overcome this issue, we use
the recently proposed Frequency Divider Formula (FDF) [12]
to estimate generator rotor speeds [13] as well as the frequency
of the COI [14] based on PMU measurements.

C. Contributions

The paper provides a thorough comparison of the effective-
ness of different frequency signals on the dynamic response
of a Wide Area Power System Stabilizer (WAPSS). These
signals are synchronous machine rotor speeds, bus frequencies
and COI frequency. All signals are properly modelled using
realistic PMU measurements and estimated through the FDF.
Moreover, a variety of PLL implementations are compared
to define the most suitable model for WAPSS applications.
Finally, a discussion on the impact of realistic time-varying
delays on the dynamic response of WAPSS is provided.

D. Organization

The remainder of the paper is organized as follows. Section
II recalls the power system state space model and presents
the applied control scheme. Section II also outlines the delay
model utilized in this work. Section III outlines the concept of
the FDF for wide area signals frequency estimation. Section IV
discusses the case study by carrying small-signal and transient
stability analyses on the two-area test system. Conclusions are
drawn and future work is outlined in Section V.



II. POWER SYSTEM MODEL AND CONTROL SCHEME

A. State Space Representation

Power system dynamics are conveniently described through
a set of Differential Algebraic Equations (DAEs):

ẋ = f(x,y,u)

0 = g(x,y,u) ,
(1)

where f (f : Rn+m+p → Rn), g (g : Rn+m+p → Rm) are
the differential and algebraic equations; x, x ∈ R

n, and y,
y ∈ R

m, are the state and algebraic variables, respectively;
and u, u ∈ R

p, are the controlled inputs. Differentiating
(1) around an equilibrium point (x0,y0,u0) and eliminating
the algebraic variables leads to the following Multiple-Input
Multiple-Output (MIMO) state space model:

∆ẋ = A∆x+B∆u

∆w = C∆x+D∆u ,
(2)

where A = fx − fygy
−1gx, B = fu − fygy

−1gu; fx,
fy , fu, gx, gy and gu are the system Jacobian matrices;
∆x = x − x0, ∆y = y − y0, ∆u = u − u0; and w are
output measurements.

B. Modal Analysis

The eigenvalues and the associated right and left eigen-
vectors of the open-loop power system ∆ẋ = A∆x can be
obtained by solving a conventional eigenvalue problem. The
geometric observability/controllability are defined as follows
[15]. The geometric observability gmoµ(k) of the mode λk

from output wµ is:

gmoµ(k) = cos(θ1(c
T
µ ,φk)) =

|cµφk|

||φk|| ||cµ||
, (3)

where cµ is the µth row of the output matrix C; θ1 is the
acute angle between cµ and the right eigenvector φk; | · | and
|| · || are the modulus and Euclidian norm, respectively. The
geometric controllability gmcν(k) of the mode λk from input
uν is:

gmcν(k) = cos(θ2(ψk, bν)) =
|bνψk|

||ψk|| ||bν ||
, (4)

where bν is the νth column of the input matrix B; θ2 is the
acute angle between bν and the left eigenvector ψk.

Based on these measures, a comparison among different
outputs and inputs can be carried out, so that the ones that pro-
vide the maximum joint geometric observability/controllability
measure are selected. The joint observability/controllability
measure is defined by:

gmcok(µ, ν) = gmcν(k) gmoµ(k) . (5)

C. Wide-Area Power System Stabilizer (WAPSS)

The WAPSS in this study is a decentralized controller
installed at the jth synchronous machine. The wide area
stabilizing signal vsi is a differential frequency of the form:

vsi = ωrem − ωGj , (6)

where ωGj is the local rotor speed of the jth synchronous
machine; ωrem is the remote signal. The remote signal may
be a rotor speed (ωGi), a bus frequency (ωBi), or the COI
frequency of a remote area (ωcoi,i). The COI angular frequency
of the area i is defined by the following algebraic equation:

ωcoi,i =

q∑

j=1

Hj

HT

ωGj (7)

where Hj is the inertia of the jth machine of the area i with
j ≤ q and HT =

∑q

j=1
Hj .
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Fig. 1: WAPSS block diagram.

In Fig. 1, Kw is the WAPSS gain, Tw is the washout
time constant, T1, T2, T3, T4 are the four stabilizing blocks
time constants, v1, v2, v3 are the WAPSS state variables and
vso the output signal. The output signal vso is an additional
input to the local Automatic Voltage Regulator (AVR) initial
reference (vref0 ), so that the controller damps electromechanical
oscillations through excitation control.

D. Time Delays

Introducing time delays in power systems changes the set
of DAEs (1) into a set of DDAEs as follows [16]:

˙̂x = f̂(x̂, ŷ, x̂d, ŷd)

0 = ĝ(x̂, ŷ, x̂d) ,
(11)

where x̂d and ŷd are the delayed state and algebraic variables,
respectively. In this study, the delays are included in the remote
signals. The delayed control signal is:

ωrem,d = ωrem(t− τ(t)). (12)

where the delay τ(t) is of the form:

τ(t) = τ0 + τp(t) + τs(t) , (13)

where τ0, τp(t) and τs(t) are the constant, the periodic and
the stochastic component of the delay, respectively [7]. The
profile of the delay model utilized is shown in Fig. 2.

III. FREQUENCY ESTIMATIONS

The FDF is a general expression which was proposed in
[12] for the estimation of the frequency at the buses of a
transmission system. In per units, the FDF reads:

∆ωB =D∆ωG , (14)

where ∆ωB and ∆ωG are the deviations of bus frequencies
and the synchronous machines rotor speeds, respectively, with
respect to the reference frequency; and D is the FDF matrix
that is obtained based on network susceptance matrices.
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Fig. 2: Time delay profile.

The inverse of the FDF can be utilized to estimate the
rotor speeds of synchronous machines from bus frequency
measurements provided by PLLs, as follows:

∆ω∗

G =D+∆ω̃B , (15)

where ∆ω̃B are the bus frequency deviations obtained from
the PLLs; ∆ω∗

G are the estimated rotor speeds; and D+ is
the Moore-Penrose pseudo inverse of D. A relevant property
of D+ is that is very sparse. This allows estimating each
rotor speed with a small number of bus frequency measures
(e.g., two for generator connected in antenna to the grid). All
properties of D+ are given in [13].

The signals ∆ω̃B are obtained through a PLL, as follows.
The three-phase voltage (vabc) at the connection bus is input to
the Phase Detector (PD), which computes the q-axis compo-
nent vq. The Loop Filter (LF) inputs the error between vq and
the estimated ṽq and outputs the estimated frequency deviation
∆ω̃Bi at bus i. The basic scheme of a PLL is shown in Fig. 3.

vabc ǫq+

−

∆ω̃B
vq ṽq

PD LF VOC

Fig. 3: PLL block diagram.

The dynamic performance of the PLL depends on the imple-
mentation of the LF. The case study below compares three PLL
configurations that can provide accurate estimations, namely
Lag-PLL, Low-Pass Filter PLL (LPF-PLL) and Synchronous
Reference Frame PLL (SRF-PLL) [17].

IV. CASE STUDY

The system considered in this study is shown in Fig. 4 [1]. It
consists of two identical areas connected through a relatively
weak tie; eleven buses B1,B2, ...,B11 and four synchronous
machines G1,G2,G3,G4 connected at the medium voltage
level of 20 kV; the nominal voltage of the transmission
system is 230 kV. Each machine is equipped with an AVR
of type IEEE DC-1 and a turbine governor. In order to obtain
estimations of the wide area signals in a more realistic way,
noise is added to the load connected at B7.

All results discussed in this section are obtained with Dome,
a Python-based software tool for power system analysis [18].
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Fig. 4: Two-area four-machine test system.

A. Scenarios

Three scenarios regarding the availability of remote signal
measurements are examined, as follows.

• SC1: rotor speed signals, ideal bus frequencies and the
area-1 COI frequency are assumed to be available. This is
the scenario commonly considered in literature. Equation
(14) provides the ideal bus frequencies (free of measure-
ment noise and latency).

• SC2: rotor speeds are not directly available but all bus
frequencies are measurable. Realistic bus frequency mea-
surements are obtained with PLLs. Rotor speeds and area-
1 COI frequency are estimated with (15).

• SC3: rotor speeds are not available and generators termi-
nal bus frequencies are not measurable. The generators
terminal buses, the rotor speed signals and the regional
COI frequency are all estimated with (15).

The three scenarios are summarized in Table I.

TABLE I: Bus measurements needed for signal estimation.

Scenario Signal Symbol Available FDF Est.

SC1

Rotor Speed ωGi ✓ ✗

Machine bus freq. ωBi Ideal ✗

Area-1 COI ωCOI,1 ✓ ✗

Other bus freq. ωBi Ideal ✗

SC2

Rotor Speed ω̃Gi ✗ ✓

Machine bus freq. ω̃Bi PLL ✗

Area-1 COI ω̃COI,1 ✗ ✓

Other bus freq. ω̃Bi PLL ✗

SC3

Rotor Speed ω̂Gi ✗ ✓

Machine bus freq. ω̂Bi ✗ ✓

Area-1 COI ω̂COI,1 ✗ ✓

Other bus freq. ω̂Bi PLL ✗

B. Open-Loop System (without WAPSS)

The system has a poorly damped inter-area mode λ =
−0.102 ± j3.824 with natural frequency fn = 0.61 Hz and
damping ratio ζ = 2.67 %. Table II shows that the input
placement with the highest controllability of λ is the AVR
of G3. In the remainder of the case study, we focus on
the following wide area signals according to the discussion
in Section II: differential rotor speed G1-G3, differential
frequency B1-G3, and differential frequency COI 1-G3.

The geometric measures of the local signal ωG3 as well
as of the wide area signals for SC1 are shown in Table



TABLE II: Controllability of λ from j-th AVR.

j 1 2 3 4

gmc 1.94 · 10−5 1.67 · 10−5 3.06 · 10−5 2.46 · 10−5

TABLE III: Geometric measures of λ from wide area signals.

Signal gmo gmco

ωG3 1.95 · 10−3 5.98 · 10−8

ωG1 − ωG3 2.59 · 10−3 7.93 · 10−8

ωB1 − ωG3 2.75 · 10−3 8.42 · 10−8

ωCOI,1 − ωG3 2.88 · 10−3 8.82 · 10−8

III. As expected, wide area signals have better observabil-
ity/controllability than local rotor speeds.

The bus measurements required by the FDF to estimate the
examined remote signals in SC2 and SC3 are summarized in
Table IV.

TABLE IV: Bus measurements utilized by the FDF.

Scenario Signal Meas. 1 Meas. 2 Meas. 3 Meas. 4

SC2 ω̃G1 B1 B5 − −

SC2 ω̃coi,1 B1 B2 B5 B6

SC3 ω̂G1 B5 B6 − −

SC3 ω̂B1 B5 B6 − −

SC3 ω̂coi,1 B5 B6 B7 −

The remainder of this section considers the transient follow-
ing the tripping of one of the transmission lines that connects
B7 with B8. The contingency occurs at t = 0.2 s and normal
operation is restored after 1 s.

Comparative results on the estimated rotor speed ω̃G1 (see
SC2) are plotted in Fig. 5. The average errors of the FD
estimations for scenarios SC2 and SC3 are summarized in
Table V. The average errors of the FD estimations are in the
order of 10−5 for both SC2 and SC3 and for all three PLLs.
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TABLE V: Mean absolute errors of FD estimations.

Error Lag-PLL LPF-PLL SRF-PLL

ω̃G1 − ωG1 2.62 · 10−5 1.30 · 10−5 1.76 · 10−5

ω̃coi,1 − ωcoi,1 2.35 · 10−5 1.39 · 10−5 1.26 · 10−5

ω̂G1 − ωG1 2.66 · 10−5 1.55 · 10−5 1.88 · 10−5

ω̂B1 − ωB1 2.30 · 10−5 1.22 · 10−5 1.64 · 10−5

ω̂coi,1 − ωcoi,1 2.43 · 10−5 1.81 · 10−5 1.54 · 10−5

A comparison between the ideal and LPF-PLL based bus
frequency measurements is shown in Figs. 6–7. The stochas-
ticity of the load connected at B7 has a significant impact on
the estimation of the bus frequencies by the PLL. However,
this does not deteriorate the estimations based on the FDF, as
shown in Table V. The FDF estimated remote signals for SC3

are shown in Fig. 8.
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Fig. 6: Frequency measurement at bus B5.
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Fig. 7: Frequency measurement at bus B7.
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C. Closed-Loop System (with WAPSS)

The WAPSS is connected to the AVR of G3. Figure 9
shows the G2 rotor speed transient response for different wide
area signals. The open loop system response is also shown
for reference. The wide area signals effectively damp the
inter-area mode. The three examined signals provide similar



overshoot and settling time. This is expected as the frequency
at a machine terminal bus response is strongly dependent on
the rotor speed of the machine itself. Moreover, the area-1
COI for the two-area system consists of two machines with
the same inertia and thus, its associated dynamics does not
differ significantly from that of each rotor speed.
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Fig. 9: G2 rotor speed with different wide area signals.
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Next, the quasi-periodic stochastic delays described in
Subection II-D are included in the wide area signals. Two
delays τ1(t) and τ2(t) are examined, with mean values 100
ms and 200 ms, respectively. The rotor speed of G2 when the
WAPSS utilizes the differential frequency B1-G3 is shown in
Fig. 10.

Even though the delays are mostly known to impact nega-
tively on the stability of power systems, this is not the case
of the trajectories shown in Fig. 10. The system performance
actually improves with the inclusion of the delays.

V. CONCLUSIONS

The paper discusses a WAPSS for damping inter-area
oscillations. The focus is on the utilization of realistic bus
frequency measurements and the FDF to obtain wide area
signals. A comparison among different PLL models for fre-
quency estimation on the two-area system serves to illustrate
the accuracy of the FDF estimations.

Simulation results show that the utilization of the remote
area information is enough to damp the inter-area mode. In
order to examine the effectiviness of COI-based wide area

signals, a test system with more synchronous machines per
area and different machine parameters is required.

An interesting result of this paper is that the inclusion of
communication delays has a positive impact on the overall
system performance. The change of the dominant local modes
with respect to the controller gain and the applied delay has
only recently been studied using stability maps [19]. Such
stability maps can also be used to understand the stability
properties of a system with a WAPSS employed to damp inter-
area oscillations. Future work will move towards this direction.
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