
 

 

Abstract—Accurate estimation of local bus frequency is 

important for effectively controlling both synchronous and 

nonsynchronous generators. As the power grid evolves to 

accommodate essential reliability services such as virtual inertia 

from nonsynchronous generators, conventional techniques to 

estimate frequency face challenges. This paper proposes a new 

frequency estimation method that can effectively include the 

inertia contributions from double-fed wind generators (DFIGs). 

This is achieved through the proposed extended frequency 

divider formula (FDF) to include the contributions of DFIGs via 

Thevenin equivalents. The proposed extended FDF does not 

suffer from numerical issues as compared to existing phasor 

angle derivative-based approaches. Moreover, the knowledge of 

the rotor speeds of the synchronous machine and DFIGs as well 

as of the network admittance matrix allows estimating the 

frequencies of all buses in the grid, thereby significantly 

improving system situational awareness with a limited number 

of measurements. Numerical results on the IEEE 39-bus power 

system with DFIGs show that the proposed method achieves 

more accurate bus frequency estimations than the original FDF 

formula and other approaches based on the numerical 

derivation of the bus voltage phase angles. 

Keywords—Frequency estimation, double-fed induction 

generator (DFIG), Thevenin equivalent, inertial emulation.  

I. INTRODUCTION 

  The penetration of power electronics-interfaced distributed 
energy resources (DERs), such as DFIGs and solar farms, 
leads to the inertia reduction in the system. This might lead to 
the unintended triggering of over/under frequency relays, load 
shedding, and special protection schemes. Indeed, if the 
available inertia is low, the rate of change of frequency 
(ROCOF) can reach unacceptable levels and might lead to 
cascading failures and blackouts. A relevant example is the 
Australian blackout in 2016 and the British blackout in 2019 
[1]. To mitigate the dynamic issue arising in low-inertia 
systems, DERs can be equipped with inertia emulation [2].  

To enable this emulation requires accurate estimation of 
frequencies at the buses of DERs. A common way to estimate 
local bus frequency is to take the numerical derivative of its 
phase angle measurement. This kind of frequency estimation 
method is widely used in phasor measurement units (PMUs) 
after Fourier transformation based phasor estimation [4]. 
However, numerical derivatives show undesirable spikes due 
to the sudden changes in bus voltage angles after a disturbance. 
These spikes may lead to instability when used in the 
frequency measurement-based control schemes. The phase-
locked loop (PLL) [6] is an alternative approach to calculate 
the local bus frequency, but its performance may deteriorate 
under harmonics and unbalance.  

Both frequency estimation methods above rely on phasor 
measurements to obtain local bus frequency and thus are 
inevitably influenced by noises and communication losses. To 
overcome these drawbacks, some analytical methods have 
been developed. In [7], a model-based derivation for local 
frequency calculation is proposed but it requires 
comprehensive and accurate power system dynamic models. 
These issues have been addressed by the frequency divider 
formula (FDF), which only needs the knowledge of generator 
rotor speeds, internal generator impedances, and the standard 
network admittance matrix [8]. In [8], the spatial variation of 
frequency in each bus is determined by synchronous machine 
rotor speeds from simulations. To overcome this limitation, [9] 
proposes an approach that allows the online implementation 
of FDF. This is achieved through a hierarchical distributed 
scheme, where dynamic state estimation is used to estimate 
the generator rotor speeds using local measurements provided 
by PMUs or digital fault recorders. Then, these estimates are 
communicated to a central coordinator for bus frequency 
estimation with the FDF.  

Both references [8] and [9] rely on the assumption that the 
only devices that can modify the frequency at their point of 
connection with the grid are synchronous machines. The 
dynamics and frequency control of DERs are neglected and, 
hence, frequency estimations might not be fully accurate. 
Indeed, if DERs are equipped with inertia emulation 
capabilities, they can provide an inertial response after major 
contingency and also participate in primary frequency 
response leading to smaller ROCOF and higher frequency 
nadir. In other words, the spatial variation of frequency at each 
bus is affected by the inertia emulation of DERs, which is not 
accounted for in conventional techniques.  

This paper fills this gap and proposes an online bus 
frequency estimation method considering inertia contributions 
from DERs. The main contribution of this work is the 
formulation of an extended frequency divider (FDF) to 
include the virtual inertia contributions from DERs. In this 
paper, we focus on double-fed wind generators (DFIGs), to 
improve frequency estimation accuracy in the presence of 
large disturbances. In particular, the Thevenin equivalent 
models of DFIGs are derived and included in the FDF 
framework. This allows us to model the relationships between 
generator rotor speeds, including both synchronous machines 
and DFIGs with virtual inertia, and bus frequencies. The 
extended FDF only requires a small set of measurements, 
namely the frequencies at the bus of synchronous machines 
and DFIGs with inertia emulation, to estimate the frequencies 
of all buses included in the network. This means that only a 
reduced number of PMUs are required to estimate bus 
frequencies. This is economically attractive since the number 
of generators is typically much smaller than the total number 
of network buses. 

The remainder of the paper is organized as follows. 
Section II introduces the problem formulation. The proposed 
extended FDF considering inertia emulation from DFIGs is 
derived in section III. Section IV presents and analyzes 
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simulation results on the IEEE 39-bus power system. 
Conclusions are drawn in section V. 

II. FREQUENCY DIVIDER FORMULA 

    Typically, the occurrence of a disturbance, such as a load 
shedding, generator tripping, and three-phase short circuit 
fault, causes an imbalance between mechanical power and 
electrical power. This instantaneous imbalance is offset by the 
synchronous generators’ inertia, thereby helping system 
frequency stability. Specifically, an increase or decrease of 
rotor speed occurs to re-synchronize synchronous generators 
with the rest of the power system, which causes rotor angle 
oscillations. These oscillations disturb the voltage phase angle 
of the terminal bus at each synchronous generator, leading to 
unbalanced power. Consequently, the oscillations propagate 
throughout the entire power system. It can be concluded that 
the power balance and the consequent frequency deviation at 
each local bus has a strong relationship with the rotor speed 
deviation of synchronous generators. To obtain the spatial 
frequency at each local bus, a boundary value problem can be 
formulated, where the boundary conditions are determined by 
rotor speeds of all synchronous generators [8].  
    According to the discussion above, the spatial frequency at 
each local bus can be characterized by instantaneous rotor 
speed estimates of all synchronous generators. This can be 
described by the original FDF developed in [8]. Specifically, 
the analytical expression between bus frequencies and rotor 
speeds of synchronous generators is as follows: 

 ( ) ( )0 0
ω V ω ED

B B G G
diag diag − =  −  (1) 

where EG
and VB

are respectively generator internal 

electromotive forces (emfs) and bus voltages; 

( )
1

0
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−
= − + ;

BBY  is the network admittance 

matrix and 
BGY is the bus to generator admittance matrix; 

0BY  is a diagonal matrix with the internal impedances of 

synchronous generators at generator buses; ω
B

and
0

 are the 

bus frequency and reference angular frequency while  ω
G

 are 

the rotor speeds of synchronous generators.  

The FDF shown in (1) provides a simple yet effective way 

of estimating all system buses with the knowledge of 

synchronous machine rotor speeds that can be obtained via 

dynamic state estimation [9]. However, inertia contributions 

from DERs are neglected and this leads to estimation bias as 

shown later. Indeed, via virtual inertia control, DFIGs can 

release kinetic energy stored in the rotor to prevent frequency 

from decreasing or absorb kinetic energy to stop frequency 

from increasing. As a result, DFIGs with inertia emulation 

can provide a frequency response similar to a synchronous 

generator. More importantly for the objectives of this work, 

the bus frequency deviation at the buses where DFIGs are 

connected is a function of the inertia emulation provided by 

these devices. Thus, the original FDF needs to be extended to 

include the virtual inertia contributions from DFIGs. 

III. EXTENDED FDF WITH DFIGS  

The Thevenin equivalent of DFIG is first presented, 
followed by the derivations of the analytical relationship 
between bus frequency and rotor speeds of synchronous 
generators and DFIGs.  

A. Thevenin Equivalent Model of DFIG 

    To obtain the extended FDF considering inertial 
contributions from DFIGs, the Thevenin equivalent of each 
DFIG is required. This section shows the derivations of such 
an equivalent. The induction generator, rotor side converter 
(RSC) and grid side converter (GSC) are also briefly discussed.      
    According to [10], if the effects of RSC and GSC are 
considered, the Thevenin equivalent impedance of the DFIG 

DFIGZ  seen from its terminal can be denoted as: 
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where rr is the rotor resistance; sr  is the stator resistance;

RSCZ  is the impedance of RSC, and s is the Laplacian 

operator; lrL and lsL are respectively the leakage inductance 

of rotor and stator; fL  represents the inductive filter at GSC; 

mL is the magnetizing inductance; slip( )s is the slip of 

induction generator in Laplace domain: 

 slip( ) Rs j
s

s

−
=  (4) 

and R  is the rotor speed of DFIG. 

    Therefore, the impedances of RSC and GSC are 

 0( ) dRSCZ H s j jK− −=  (5) 

 0( ) dGSCZ H s j jK− −=  (6) 

 where ( ) i

p

K
H s K

s
= + ; pK  is the proportional gain; iK  

and dK  are the integral gain and compensation gain, 

respectively. The voltage sources behind them are 

respectively
*

0( )rI H s j− and  
*

0( )gI H s j− , where 
*

rI  is 

the reference current in RSC and 
*

gI  is the reference current 

in GSC. With a constant dc bus voltage between RSC and 

GSC, the dynamics of the GSC and RSC are uncoupled [11]. 

Therefore, the overall circuit is now shown in Fig. 1. 
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Fig. 1. The electric circuit of DFIG considering virtual inertia control. 

Thus, according to Fig. 1, the Thevenin equivalent potential 

RE  can be calculated as follows: 
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   The inertia emulation of DFIG considered in this paper is 

the droop control based on frequency deviation, which can be 

expressed as [12]: 

 P R f = −   (10) 

where P  is the deviation of reference active power of 

DFIG; R is the droop gain and f is the frequency deviation 

at the bus where DFIG is connected to. Since 
*

rI  varies due 

to P , P only changes RE . Therefore, (2) and (7) are 

sufficient to calculate the Thevenin equivalent model of 

DFIG no matter the inertia emulation is equipped or not. 

B.  Frequency Divider Formula with  DFIGs 

    Electromechanical oscillations can be depicted by the 
magnitude and phase angle modulations of voltages and 
currents because they are closely related to the rotor speed 
deviation of synchronous generators [13]. Thus, to include the 
inertia contributions from DFIGs into the FDF framework, the 
relationship of the voltage or current phasors between 
generators and system buses should be firstly built, which can 
be expressed as: 
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where IG
, I

R
 and IB

 are respectively current injections from 

synchronous generators, DFIGs and loads; 
GGY  is the 

admittance matrix obtained by utilizing the internal 
impedances of synchronous generators at generator buses; 

Y
RR

, YBR
 and YRB

 are admittance matrices obtained by 

utilizing the Thevenin equivalent impedances of DFIGs; 0YB  

is a diagonal matrix, which is calculated with the internal 
impedances of synchronous generators and the Thevenin 
equivalent impedances of DFIGs.  

Since the equivalent load admittance is smaller than the 

diagonal elements of 
0

Y Y
BB B
+ , load current injections are 

neglected. This assumption has been used in [8] and extensive 
numerical results carried out demonstrate that it does not 
affect the accuracy of the FDF. Thus, (11) is rewritten as: 
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Then, the analytical relationships between E
R

, EG
and bus 

voltages can be derived as: 
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    Applying time derivatives on both sides of  (13), the 

following formula can be obtained: 
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    According to [8], the following assumptions can be made: 
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where
,B i

  and 
,B i

V  are respectively the angular frequency 

and voltage amplitude of bus i;
,G k

  and 
,G k

E  are 

respectively the rotor speed and emf of synchronous 

generator k; 
R l


,

 ,
,F l

 and 
,R l

E  are respectively the rotor 

speed, the rotor excitation angular frequency and Thevenin 

equivalent potential of DFIG l; 
0R l


,

 is the value of 
R l


,

 in 

the steady-state. Merging (13), (14), and (15) leads to: 
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It is noticeable that the conductance of the elements of all 

admittance matrices used to compute D  is small enough to 

be neglected. The following assumptions are made in [8]: 

 p.u. and p.u.V    E   1 1
B G
   (17) 

However, if and
B G

 V  E are available from estimations, or 

PMUs, or other devices, we can use their online values. 

IV. NUMERICAL RESULTS 

This section demonstrates the effectiveness of the 

proposed FDF considering DFIGs using simulations on the 

IEEE 39-bus system. The network is shown in Fig. 2 and 

details of adding DFIGs will be shown later. All simulations 

are carried out using DIgSILENT PowerFactory. 
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Fig. 2. The single-line diagram of the IEEE 39-bus power system. 

Three scenarios are considered in this paper. The 

disturbances are all three-phase faults that occur at 1 s and are 

cleared at 1.1s. The parameters of each wind turbine are 

shown in Table I. The per-unit value of each wind turbine 

parameter is based on the rated power of 5 MW with a rated 

voltage of 0.69 kV. Since the stator frequency of each DFIG 

turbine is unknown, the angular frequency of the center of 

inertia COI
  for the entire wind farm is utilized to calculate 

s, yielding 0
( )

COI
s j  = − [11]. The synchronous reference 

frame PLL (SRF–PLL) is the simplest and the most 



 

 

commonly used scheme for frequency estimation of DERs 

[14]. Therefore, the SRF-PLL is utilized for comparison with 

other frequency estimation methods. DIgSILENT 

PowerFactory also provides a frequency estimation which is 

a washout filter. The frequency estimation results from 

DIgSILENT PowerFactory as well as the original FDF are 

also utilized for comparisons. 

TABLE I.  PARAMETERS OF EACH WIND TURBINE 

Parameters Value (p.u.) Parameters Value 

sr  0.01 pK  0.0496 

lrL  0.1 iK  0.0128 

lsL  0.1 dK  0 

fL  0   

mL  3.5   

A. FDF without Inertia Emulation of DFIGs 

Scenario 1: The G10 is replaced by DFIG1 of 250 MW 
with 50 wind turbines. The inertia emulation is not considered 
in this scenario to assess the frequency estimation accuracy of 
each method. The three-phase fault is applied to bus 16. This 
bus connects the areas A and B of the IEEE 39-bus system, 
thus a three-phase fault at this bus leads to large disturbance 
and, in turn, to large frequency deviations.   

 

Fig. 3. Estimated frequency at bus 30 by different methods in scenario 1. 

The estimated frequency at bus 30 by each method is 

shown in Fig. 3. The results obtained with DIgSILENT 

PowerFactory and SRF–PLL suffer from spikes when the 

disturbance occurs. This is typical of all methods that involve 

some sort of numerical derivative of bus voltage phase angles. 

On the other hand, both the original FDF and the proposed 

formulation avoid spikes. The rotor speeds of synchronous 

machines and DFIGs are state variables and, as such, cannot 

change instantaneously. The FDF builds the analytical 

relationships between bus frequencies and those rotor speeds. 

Therefore, the bus frequencies calculated from rotor speeds 

are not subject to sudden changes. After the initial spike, it is 

interesting to observe that the extended FDF has closer results 

as those from DIgSILENT PowerFactory and SRF–PLL than 

the original FDF after disturbances. This is because DFIG 

still provides some inertial response though DFIG is not 

equipped with inertia emulation due to the PLL 

synchronization scheme [15]. As a result, the extended FDF 

implicitly captures the small inertial response and contributes 

to the variation in the estimation of spatially distributed bus 

frequencies.  

Figs. 4(a) and 4(b) show the Thevenin equivalent potential 

value and impedance of DFIG1, respectively, during the 

transient process in Scenario 1. These two values change due 

to the inertial response although being very small. Therefore, 

they cannot be treated as constants. Neglecting these 

variations affects the frequency estimation, as shown by the 

comparisons between the original and extended FDFs. 

 
    (a)                                      (b) 

Fig. 4. Thevenin equivalent of DFIG1 during the transient process in 

scenario 1. (a) Equivalent potential value. (b) Equivalent impedance. 

B. FDF with Inertia Emulation of DFIGs 

    Scenario 2: The settings are similar to Scenario 1, where 
G10 is replaced by DFIG1 but the droop control-based inertia 

emulation is considered with a droop coefficient R of 2. 

 

Fig. 5. Estimated frequency at bus 30 by different methods in scenario 2. 

 

   (a)                                         (b) 

Fig. 6. Thevenin equivalent of DFIG1 during the transient process in 

scenario 2. (a) Equivalent potential value. (b) Equivalent impedance. 

The frequency estimations at bus 30 by the four methods 

are presented in Fig. 5. The magnitude of bus frequency has 

been reduced for both the original and extended FDFs. For 

the original FDF, due to the activation of inertial emulation, 

the system has more frequency support and the synchronous 

machines have reduced rotor speed deviations. This results in 



 

 

the reduced magnitude of the bus frequency. Although the 

original FDF can capture the impact of inertial emulation 

control, it is still subject to estimation biases as compared to 

the extended FDF. Again, since it neglects the contributions 

of DFIGs to frequency deviations, the original FDF does not 

achieve similar accuracy as those by DIgSILENT 

PowerFactory and SRF–PLL.  

Figs. 6 (a) and 6(b) show the Thevenin equivalent potential 

value and impedance of DFIG1, respectively, during the 

transient process in Scenario 2. With inertial control, DFIG1 

reduces more active power than the one without it, leading to 

larger rotor speed deviation. As a result, DFIG1 has smaller 

Thevenin equivalent potential but larger equivalent 

impedance as compared to Scenario 1. 

C. Multiple Wind Farms Considering Inertia Emulation 

Scenario 3: G10 and G5 are respectively replaced with 
DFIG1 and DFIG2, and the power capacity of DFIG2 with 
100 wind turbines is 500 MW. Inertia emulation is 

implemented for both DFIGs. The droop coefficient R is set 
to 1 in both DFIGs. 

  
(a) 

 
(b) 

Fig. 7. Frequency estimation results in scenario 3. (a) Estimated frequency 

at bus 30. (b) Estimated frequency at bus 34. 

     The estimated frequencies at buses 30 and 34 are plotted 

in Figs. 7(a) and 7(b), respectively. Simulation results are 

consistent with those obtained for Scenarios 1 and 2. An 

interesting observation is that, with the increased penetration 

of DFIGs, the fluctuations in the system becomes more 

violent, causing more severe spikes in the frequency 

estimation results from DIgSILENT PowerFactory and SRF–

PLL. If the controls are designed based on these inaccurate 

frequency estimates, the controller may show instability 

issues. The extended FDF is thus more suitable for local 

frequency estimation than other methods especially in 

systems with high penetration of DFIGs. 

V. CONCLUSION 

An extended FDF is proposed to include the inertia 

emulation contributions from DFIGs. With this aim, a 

Thevenin equivalent model of DFIGs is derived and is duly 

included in the formulation of the FDF. This allows building 

an analytical relation between the rotor speeds of DFIGs and 

synchronous generators and bus frequencies. Simulation 

results carried out on the IEEE 39-bus system show that the 

proposed method yields a more accurate and robust frequency 

estimation than existing methods. In future work, we will test 

the proposed method under different inertia emulation 

schemes and larger-scale systems with different penetration 

levels of DERs and energy storage systems. 
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