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Abstract—This paper presents a short-term dynamic electricity
market model with ‘“memory effect”” The model takes into
account how the memory of market participants, in this work
the memory of suppliers, impacts on their behavior, i.e., on
their bids. The memory effect is represented by employing
proper mathematical tools from the theory of fractional calculus.
The impact of the proposed fractional-order model on system
dynamics and, in particular, its interaction with a secondary
frequency control, are studied by means of the well-known
WSCC 9-bus system. The proposed model is also compared
with a conventional, integer-order electricity market model.
Results indicate that the inclusion of memory leads participants,
e.g. suppliers, to adopt a conservative behavior.

Index Terms—Dynamic electricity market, memory effects,
fractional calculus, power systems.

I. INTRODUCTION

Short-term electricity markets, e.g. balancing markets, are
becoming increasingly important as the integration of variable
renewable energy sources like wind and solar continues [1].
These markets offer flexibility to the power system by main-
taining the power balance until physical generation and con-
sumption. The timescale of these markets is comparable with
those of the long-term power system dynamics, i.e. secondary
frequency control [2]. Because of the similar timescales, there
is a concern on the coupling between the dynamic response
of the system and such markets [3]. The first studies that
have looked at this problem date back to around two decades
ago when Alvarado used first-order differential equations to
describe the dynamics of a short-term electricity market model
[4]. This model is an abstraction but allows studying the
stability of the markets as well as interactions with the power
grid [S]. Numerous works have used this model to date. For
example, we cite [6] and [7].

In this work, we propose an approach to include in the
dynamic model [4] a specific aspect of the behavior of the
market participants such as suppliers, namely the “memory
effect.” This aspect is absent in the several variants of the
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Alvarado’s model proposed so far in the literature. These mod-
els, in fact, are all based on conventional integer-order time
derivatives. These consider an infinitely small neighborhood
of the “present” time, i.e. the time at which the derivatives are
computed [8]. This means that, by definition, the processes
that are modeled through conventional differential equations
have infinitely fast “amnesia.” However, taking into account
the memory of market participants is of utmost importance
in economic processes as they can remember the changes of
economic indicators and factors in the past [9]. These changes
can then impact their behavior and decisions.

An effective and powerful tool to model the memory effects
of a dynamic system is fractional calculus, which deals with
the analysis of non-integer order differentials and integrals
[10]. The ability of fractional derivatives to capture physical
processes better than traditional integer-order derivatives has
been shown for a number of systems in physics and engineer-
ing [11]. For example, reference [12] provides a review of the
application of fractional calculus in science and engineering.
The recent work in [13] proposes a new economic model of the
price dynamics of goods that takes into account the memory
of the market agents. Using the work in [13] as a source of
inspiration, this paper takes into account for the first time the
memory of the participants, in particular, suppliers, in power
system markets.

The specific contributions of the paper are as follows:

e A dynamic electricity market model with inclusion of
memory effect. The memory is represented through
fractional-order derivatives.

e An in-depth comparison of the impact of fractional
and integer-order market models on the decision-making
process of suppliers, as well as on the overall dynamic
performance of the grid.

The remainder of the paper is organized as follows. Sec-
tion II recalls Alvarado’s dynamic market model. Section III
describes the modeling of economic processes with memory
using fractional calculus. Section IV presents the proposed
fractional-order market model. Section V compares the impact
of integer and fractional market models on the decision-
making of suppliers and on power system dynamics. Finally,
conclusions and future work are discussed in Section VI.



II. DYNAMIC ELECTRICITY MARKET MODEL

Reference [5] proposes a dynamic market model to study
the couplings between the dynamics of the power network and
the short-term electricity market. The model is formulated as:
d\(t)

dt
dApgi (t)

TgiT = A(t) = cgiApgi(t) = bgi,

Ty = Kp(w™ — wcor(t)) — HaA(t), (1

1=1,...,n4,
2)

where () is the electricity price; w™f represents the reference
frequency; wcor(t) represents the frequency of the Center-of-
Inertia (Col); Apg;(t) is the variation of the i-th generator
active power; cg; and bgy; are the parameters of the marginal
cost of the i-th generator; T, Ty, are time constants; Hg
is the deviation with respect to a perfect tracking integrator;
and Kg is the feedback gain. Equation (1) accounts for the
system power imbalance indirectly, i.e., through the deviation
frequency of the Col with respect to the reference frequency,
i.e. w —weor(t). Finally, equation (2) assume that a generator
will increase/decrease its power production if the electricity
price A(t) is higher/lower than its marginal cost. Note that,
in the original model proposed in [5], also the loads are
included in the market using an expression similar to (2). In
the remainder of this paper, however, we assume that loads
are inelastic.

The market model (1)-(2) has a very similar structure to
that of a conventional secondary frequency control, i.e. the
automatic generation control (AGC) [14]. To better illustrate
similarities, the control diagrams of a conventional AGC and
that of the market model (1)-(2) (or MAGC) are depicted
in Fig. 1 and Fig. 2, respectively. It can be seen that the
input of both controllers is the same. The AGC includes an
integrator with gain K, that has a similar function with the
Low-Pass Filter block of the market, namely, to reduce the
frequency oscillations. Finally, the outputs of the AGC and
MAGC are distributed to the turbine governors (TGs) of the
synchronous generators proportionally to their droops (R;) and
bids, respectively.
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Fig. 1: AGC control diagram.

III. MODELING ECONOMIC PROCESSES WITH MEMORY

A mathematical tool that allows modeling the memory ef-
fects of market agents is fractional-order differential equations.
The recent work [13] extends the well-known Evans model
— that describes the price dynamics of goods [15] — to take
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Fig. 2: MAGC control diagram.

into account the memory of market participants. Based on this
theoretical background, this section shows the mathematical
steps that lead to the proposed fractional market model.

The Evans model of price dynamics is as follows:

dA@t) _ - dQ(t)

dt dt ’

where A(t) represents the price of goods; ~y is a proportional
coefficient that represents the speed of response; and Q(t)
represents the stocks. The change in stocks is defined by the
following differential equation:

dQ(t

CO _ s~ i @

14

where S(t) and D(t) represent the supply and demand for
goods, respectively. Using equation (4), equation (3) can be
rewritten as:

3)

%&t) — (S(t) - D(t)). 5)

The supply and demand are described by the following equa-
tions:
S(t) = cs + bsA(t),

6
D(t) =dg + aqA(t), ©

where ag, bs, cs,dq are constant parameters. In particular, c;
and dy represent the supply and demand, respectively, and do
not depend on the price A(t). In general, it is assumed that
aq < 0 and bs; > 0. Using equation (6), equation (5) of price
dynamics can be rewritten, as follows:

dA(t)

7 + ’Y(bs - ad)A(t) = 'Y(dd - Cs) . (7

Equation (7) is a first-order differential equation. It cannot
account for the memory of the market participants. With this
aim, one has to consider not only the difference S(t) — D(t),
but also the “history” of changes of the differences S(7) —
D(7) on a finite time interval 7 € [0,¢]. Such a dependence
of A(t) can be described by the following equation:

4O [

t (8)
=—Av@;Wﬂﬂ—DmMm

where ~(t) represents the memory function. Assuming a
power-law fading memory, the function (¢) can be written



as follows:
_ Y _ a—1
fY(t - T) - F(OZ) (t T) ) (9)

where I'(«) is the gamma function; 0 < a < 1 is the
fractional-order; and ¢ > 7. Using (9), (8) can be rewritten

as:
dA(t
PO~ (o) 0

= (I}%L;O+(S o D)) OF

where Igrp.0+ is the Riemann-Liouville fractional integral
defined as:

(10)

t
I,%L;Nf(t):ﬁ/o (t— 1) f(rdr, (11

where the function f(7) is measurable on the interval (0,t)
and has the property fot |f(7)|dT < o0. Since we are interested
to obtain a differential equation for the price dynamics, we act
on equation (10) by the left-sided Caputo derivative of order
a > 0 defined as follows:

d* 1

— ‘ _Tn—a—l (n)T 7_
£(t) )/O@ yraLf ) ()

I'n—«
12)
and obtain the following fractional differential equation:
da+1

T o, M) = 3(S(0) — D(t)

where n —1 < a+1<1and n € N. It can be seen that for
a = 0, equation (13) takes the form of the equation (7), while
for « = 1, equation (13) takes the form of the second-order
differential equation of the Evans model [13].
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IV. DYNAMIC ELECTRICITY MARKET MODEL WITH
MEMORY EFFECT

The short-term electricity market model (1)-(2) cannot cap-
ture the memory of market participants as it uses first-order
integer derivatives. On the other hand, the previous section
shows that the memory of market participants can be taken
into account using the mathematical tool of fractional calculus.
Motivated by this theoretical background, we propose the
following fractional-order version of the dynamic electricity
market model (1)-(2):

T)\ d/zlit) = K ( ref _ WCOI(t)) - A(t) ) (14)
Tgid Ad];zz(t) = A(t) = cgilpgi(t) —bgi, i=1,...,ng,
15)

where 0 < a < 1 is the fractional order. The new mar-
ket model (14)-(15) accounts for the memory of generators
through the fractional equation (15) of the generator dynamics.
Note that in this work we consider a conventional power
system with synchronous generators. Non-dispatchable gen-
eration, such as wind and solar energy resources, if bidding in
the electricity market, can be also modeled using (15). A case
study that considers wind generation and the market model
(1)-(2) with o = 1 can be found in [14].

A. Oustaloup’s Recursive Approximation

In order to implement or simulate in practice the proposed
fractional market model (14)-(15), one needs to approximate
the fractional dynamics, in this case equation (15), with
rational order transfer functions [16]. In this work, we select
the Oustaloup’s Recursive Approximation (ORA) method to
approximate the fractional generator dynamics. The general-
ized ORA of a fractional derivative of order « is defined as
[17]:

!
Y~ wy S Wk , (16)
paiet S + Wk
(2k—1—a)/N (2k—1+4a)/N

where wj, = wywy , WE = WpWy , Wy =
\/wp /wp. In the above expressions, [wy,wy,] is the frequenc
range for which the approximation is designed to be valid;
N is the order of the polynomial approximation. The term
“generalized” means that, in (16), N can be either even or
odd [17], while the term “recursive” implies that the values
of w}c, wy result from a set of recursive equations [18]. The
block diagram of ORA is shown in Fig. 3. Further details on
the ORA method and its accuracy can be found in [16] and
references therein.
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Fig. 3: Oustaloup’s recursive approximation block diagram.
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V. CASE STUDY

In this section, we study the dynamic behavior of the
two dynamic market models introduced in Sections II and
IV, namely, conventional integer-order MAGC (I-MAGC) (1)-
(2) and fractional-order MAGC (F-MAGC) (14)-(15). The
objective is to evaluate the impact of these models on the
behavior of market participants, e.g. generator schedules, and
on the overall dynamic response of the power system. With
this aim, we first discuss the impact of I-'MAGC and illustrate
the dynamic coupling between market and AGC in Section
V-A. Section V-B discusses a sensitivity analysis with respect
to the fractional-order o of the F-MAGC and compares results
with the I-MAGC. Both Sections V-A and V-B consider a
10% sudden load increase. The dynamic response of both I-
MAGC and F-MAGC following a 10% sudden load decrease
is presented in Section V-C.

The case study is based on a modified version of the well-
known WSCC 9-bus test system, whose details are provided
in [14]. All simulations are performed using the power system
analysis software tool Dome [19].

A. Impact of the Frequency of Price Updates

Some long-term power system dynamics, e.g. the dynamics
of the AGC, evolve with a timescale similar to today’s short-
term market dynamics [2]. For this reason, it is important to
understand how the frequency with which the market price



is updated impacts on the decision-making process of market
participants and on power system dynamics. In the continuous
market models considered in this paper, the information on
how often the price is updated is contained in the value of
the gain K in (1). Hence, this section presents a sensitivity
analysis with respect to the variations of the Kp.

Figure 4 shows that the value of K g has a negligible impact
on the overall dynamic of the system, i.e. the frequency nadir
is the same in all cases. This was expected as the MAGC
is slow with respect to the primary frequency control. Figure
5, on the other hand, shows that the schedule of generator
active power are by the value of Kg. Specifically, the faster
the price updates, i.e. the higher K g, the faster the generator
response and consequently the higher the generator schedules.
This phenomenon is called price chasing [20]. These results
indicate that how often the market updates the price (which in
this continuous model is modeled by means of Kg) impacts
the schedule of the suppliers or generators.
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Fig. 4: Trajectories of the frequency of the Col.
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Fig. 5: Trajectories of the MAGC active power schedules of generator 1.

The trajectories of the AGC set-point Ap; of generator 1 are
shown in Fig. 6. Higher gain values — and hence faster price
updates — lead to faster AGC response and lower AGC set-
points. This has to be expected as the AGC has to compensate
the difference in the market schedules since at the end the
total power output of the generator has to be the same. These
results imply that, depending on the market design and rewards
of the ancillary services, generators may prefer to compensate
power imbalances through the short-term market or through
the secondary frequency control.

B. Sensitivity Analysis

This section presents a sensitivity analysis with respect
to the fractional-order av of the F-MAGC and compares the
results with the ones obtained using the conventional integer-
order market model. For fair comparison, all other parameters,
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Fig. 6: Trajectories of the AGC active power set-point of generator 1.

namely time constants and gains, of both market models, (1)-
(2) and (14)-(15), are kept the same.

First we compare the impact of -lMAGC and F-MAGC on
power system dynamics. Figure 7 shows the trajectories of
wcor for both models. It is interesting to observe that both
the I-MAGC and F-MAGC lead to the same frequency nadir
and very similar frequency overshoots. The memory of market
participants, thus, does not have a relevant impact on the
overall power system dynamics. These results are consistent
with those shown in Fig. 4.
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Fig. 7: Comparison of the trajectories of the frequency of the Col as obtained
with the -lMAGC and F-MAGC.

Next we compare the impact that different values of «
have on the behavior of the generators. Figure 8 shows that
the F-MAGC leads to different (in this case, lower) market
schedules as compared to that of the I-MAGC. This result
suggests that the F-MAGC is less prone to the price changes.
In other words, taking into account the memory of market
participants makes them more conservative. Furthermore, the
higher the fractional-order a, the faster the generator response,
and consequently the higher the generator market schedules.
This conclusion is supported by Fig. 9. This figure shows that
the AGC set-point for the fractional market is less prone to
changes compared to the conventional market. Observe that,
in steady-state, the total active power generation depends only
on the variation of the load consumption. However, o changes
the quota of active power produced by each machine. The
dependency of the steady-state on « is evident in Fig. 8.
However, for a > 0.9 and o — 1, the steady-state operating
point of each machine varies very little.

C. Impact of a Sudden Load Decrease

In this final example, we compare the impact on the
performance of I-MAGC and F-MAGC of a 10% sudden load
decrease occurring at t = 1 s.
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Fig. 11: Trajectories of the AGC active power set-point of generator 1.

Figure 10 shows that the F-MAGC is again less prone to
price changes compared to the [-lMAGC. For the considered
contingency, such a behavior leads the market to schedule
higher generator powers.

Figure 11 shows the AGC power output and indicates that
the I-MAGC case responds faster than the F-MAGC to the
contingency. This result is consistent with that obtained in the
previous section, i.e. the memory effect makes the generators
less sensitive to changes in the operating point of the grid. This
conservativeness, however, has to be compensated, at least in
the short term, by the secondary frequency regulation.

VI. CONCLUSIONS

This paper proposes a fractional dynamic electricity market
model. The model takes into account the memory of suppliers
through fractional calculus. Results indicate that the memory
effect leads to a conservative behavior of suppliers and their
decisions. This paper is a very first attempt to model the be-
havior of market participants and its impact on their decisions
and on power system dynamics. We believe that this work
poses the basis for interesting future developments.
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