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Abstract—The paper provides a simple and robust model-
independent compensation technique to mitigate the impact of
time delays on power system stability. As the proposed approach
requires the first derivative of the delayed signal, the resulting
model of the power system with inclusion of compensation is in
the form of neutral delay differential-algebraic equations. The
paper also provides a systematic approach to evaluate the small-
signal stability of the compensated system. This is done through a
descriptor model transformation, Chebyshev discretization, and
Newton correction. The IEEE 14-bus system is utilized to test
the effectiveness and robustness of the proposed compensation
technique.

Index Terms—Delay compensation, small-signal stability analy-
sis, neutral delay differential equation (NDDE), delay differential-
algebraic equation (DDAE).

I. INTRODUCTION

A. Motivation

Wide-area measurements and controllers inevitably intro-

duce time delays into power systems. The magnitude of these

time delays are usually around 100 - 200 ms (but can be up to

700 ms [1]) and tend to deteriorate the oscillation modes and

even destabilize power systems [2]–[4]. Delay compensation

is a common approach to mitigate the impact of time delays

on power system stability. This paper proposes a new simple

and robust delay compensation technique for power system

controllers only based on delayed signals.

B. Literature Review

Smith predictor is the most widely used delay-compensation

approach [5], [6]. In the power system context, Smith pre-

dictors have been proposed to compensate the delayed signal

feeding a power system damping controller [7], [8]. Such a

controller is implemented at the power plant from where the

signal is transmitted. In practice, however, it might not be

possible to implement the control loop at the signal sending-

end side due to technical, security and/or ownership issues.

Advanced controllers, such as H∞ [9], sliding-mode [10]

and hybrid [11] controllers, are also developed to mitigate

the stability impact of time delays on power system. Apart

from applications of the newly-developed advanced con-

trollers, updating the parameters through adaptive or fuzzy
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strategies of existing controllers also improves the robustness

of power systems against time delays [12]. The proposed

delay-compensation technique is much more straightforward

than above control approaches and still improves the system

delay margins. Meanwhile, it is also possible to combine the

proposed method with the advanced controllers.

The stability analysis of a system that includes the pro-

posed delay-compensation technique is not straightforward.

The proposed technique, in fact, requires the first derivatives of

delayed variables, thus leading to a model formulated in terms

of neutral delay differential equations [13]. Most stability

analysis approaches for neutral delayed systems are based on

Lyapunov-Krasovskii Functional (LKF) [14]–[16]. However,

LKF approaches are model-dependent, over-conservative, and

too computational demanding to be applied systematically to

real-world power systems [13]. To avoid these issues, the

small-signal stability analysis considered in this paper is based

on frequency-domain and Chebyshev discretization. Such a

small-signal stability analysis is comprehensively described in

previous works by the authors [2], [13], [17]–[19].

C. Contributions

To the best of our knowledge, this is the first attempt to im-

plement a model-independent delay compensation technique

for power system control. Moreover, compared to the Smith

predictor, the proposed technique is more general and more

feasible to implement in power systems.

The specific contributions of the paper are the following.

• A proposal of a simple but efficient model-independent

delay compensation technique.

• A discussion on how to implement the proposed delay

compensation technique in power system devices as well

as in Time Domain Integration (TDI) routine.

• A systematic two-step approach to evaluate the small-

signal stability of the power system implemented with

the proposed delay compensation.

The latter approach can be utilized to obtain the delay

margin of the system and find the optimal gain of the compen-

sation plant. It can also be utilized to generate stability maps

to define the relationship between the compensation gain and

delay magnitude.



D. Organization

The paper is organized as follows. Section II introduces the

proposed model-independent delay compensation technique

and considers an illustrative numerical example to show the

effect of the technique. Section III explains the small-signal

stability analysis approach of the power system implemented

with the proposed delay compensation. Section IV provides the

case study based on the IEEE 14-bus system. The proposed

method is utilized to compensate the delayed input signal

of the Power System Stabilizer (PSS) in the power system.

Section V provides conclusions and outlines future work.

II. DELAY COMPENSATION METHOD

This section presents the proposed delay-compensation

technique and provides a numerical example to illustrate its

effectiveness.

A. Proposed Method

The basic idea of the proposed delay-compensation tech-

nique is straightforward. Let us assume that a system is

stable without introducing any time delay but is unstable if a

sufficiently large delay is introduced. To stabilize the delayed

system, one of the most straightforward choices is to make

the delayed signal more like the non-delayed one. With this

idea, we consider a compensation technique based on the first

derivative of the delayed signal.

Consider a signal x(t). The delayed signal is xd(t) = x(t−
τ). If τ is small, the following approximation holds:

ẋ(t) ≈
x(t) − x(t− τ)

τ
, (1)

thus,

x(t) ≈ x(t− τ) + τ ẋ(t) . (2)

At the receiving end, the time derivative of the non-delayed

signal is unknown, so we consider the following approxima-

tion:

ẋ(t) ≈ ẋ(t− τ) . (3)

The compensated signal xcom that mimics the original signal

x based on the delayed signal xd can be deduced:

xcom(t) = xd(t) +Kτ τ ẋd(t) , (4)

where Kτ is the gain of the compensation. The purpose of this

gain is to compensate numerical errors of the approximations

considered in (1) and (2) as well as reduce the impact of esti-

mation errors of the value of τ . According to our experience,

Kτ ∈ (0, 2.0].
In practice, the first derivative of the delayed signal can

always be calculated numerically:

ẋ(t) ≈
x(t) − x(t−∆t)

∆t
, (5)

where ∆t is a small time step that can be chosen according to

the sampling rate of the measurements. In the TDI simulations

carried out in the case study, ∆t is set as the magnitude of

the TDI time step, namely 1 ms.

B. Numerical Example

Consider the following simple signals:

x(t) =

{

0, if t < 0

sin(t), if t ≥ 0

xd(t) = x(t− τ) ,

with τ = 0.5 s. The compensated signal is 0 for t ∈ [0, τ ] s.

For t ≥ τ , one has:

xcom(t) = xd(t) +Kτ τ ẋd(t)

= sin(t− τ) +Kτ τ cos(t− τ) ,

where we choose Kτ = 1.2 .

Figure 1 shows the comparison of the original non-delayed

signal x, the delayed signal xd and the compensated signal

xcom for t ∈ [0, 2π] s. The compensated signal xcom effec-

tively approximates the non-delayed signal x for t ∈ [τ, 2π] s.
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Fig. 1: Trajectories of the signals x, xd and xcom for the

numerical example.

The compensation of delays in real-world applications is

clearly more complex than this example. It is worth noticing,

however, that the main goal of the compensation technique

in power system applications is not to perfectly mimic the

original signal, but rather to improve the robustness of the

system against time delays. This point is further discussed in

Section IV, which presents a case study based on a standard

power system.

III. SMALL-SIGNAL STABILITY ANALYSIS

This section provides a systematic small-signal stability

analysis approach to depict the effect of the proposed delay-

compensation technique on power system stability. Subsection

III-A introduces the mathematical model of the power system

implemented with the proposed delay compensation. Subsec-

tion III-B explains the approach to evaluate the small-signal

stability of this model.



A. Delay Differential-Algebraic Equations

Power systems with inclusion of delays can be modeled as

a set of index-1 Hessenberg form Delay Differential Algebraic

Equations (DDAEs) [2]:

ẋ(t) = f(x(t),y(t),x(t− τ ),y(t− τ ),u(t))

0 = g(x(t),y(t),x(t− τ ),u(t)) , (6)

where x and y are state variables and algebraic variables, u

are discrete variables modelling events, e.g, line outage, and

τ are time delays.

The differentiation of (6) at an equilibrium point leads to:

ẋ(t) = Aox(t) +

nτ
∑

i=1

Aix(t− τi) , (7)

where Ao is the conventional state matrix of the system, and

Ai are the parameter matrices of the delayed variables and nτ

is the number of the delayed variables [2].

Consider a general solution of (12), x(t) = e−λtν, where

ν is a non-trivial vector called eigenvector and λ is the

eigenvalue. Then, the characteristic equation of (12) can be

obtained from solving the following problem:

∆(λ)ν = 0 , (8)

or, equivalently:

det
(

∆(λ)
)

= 0 , (9)

where

∆(λ) = λI −Ao −

nτ
∑

i=1

Ai e
−λτi . (10)

∆(λ) is called characteristic matrix. As it is well known, the

roots of (10) define the local stability properties of (6).

In the case study, the damping ratio of the critical right-most

eigenvalues is relevant. This is defined as follows:

ζ =
−α

√

α2 + β2
, (11)

where α and β are the real and imaginary part of a pair of

complex eigenvalues, namely, λ = α± jβ.

B. Neutral Delay Differential Equations

If the delay-compensation technique is applied to power

systems, the delayed variables x(t− τi) in (7) are replaced by

the compensated variables as in (4). Thus, the standard form

for the small-signal model of the power system implemented

with the proposed delay compensation is:

ẋ(t) = Aox(t) +

nτ
∑

i=1

Aixcom(t) (12)

= Aox(t) +

nτ
∑

i=1

Ai

(

x(t− τi) +Kτ,i τi ẋ(t− τi)
)

.

The proposed compensation technique introduces the time-

derivatives of delayed variables ẋ(t−τi) and makes the overall

system a set of Neutral Delay Differential Equations (NDDEs)

which are not standard index-1 Hessenberg form DDAEs.

To cope with this difficulty, this subsection presents a

method to compute the eigenvalues of (12). The method

includes two steps: (i) compute the approximated eigenvalues

of a comparison system through Chebyshev discretization;

and (ii) correct the approximated eigenvalues through Newton

iterations based on the characteristic equation of (12).

1) Comparison System and Approximated Eigenvalues:

References [18] [13] by the first and the third authors provide

a general approach to compute the approximated eigenvalues

of the system in the form of the following NDDE:

ẋ(t) = h(x(t),x(t− τ ), ẋ(t− τ )) . (13)

Interestingly, differentiating (13) leads to a set of equations

that have the same structure of (12). Hence, the approximated

eigenvalues of (12) can be solved according to the approach

discussed in [18] and [13]. An outline of the steps required to

define the comparison system and compute its approximated

eigenvalues is as follows:

• Consider a comparison system of (12) in non-index-1

Hessenberg form [17]:

ẋ(t) = z(t) (14)

0 = Aox(t)− z(t) +

nτ
∑

i=1

(

Aixd,i(t) +Bizd,i(t)
)

,

where z are auxiliary algebraic variables and:

xd,i(t) = x(t− τi)

zd,i(t) = z(t− τi)

Bi = AiKτ,iτi ,

The comparison system (14) has identical eigenvalues

with (12), which is proved in [13]. This is a typical

descriptor model transformation [14].

• The characteristic matrix of (14) is:

∆(λ̂) = λ̂I −Ao −

nτ
∑

i=1

C0

i e
−λ̂τi −

nτ
∑

i=1

∞
∑

k=1

Ck
i e

−λ̂τi .

(15)

where:

Ck
i = Bk

i (Ai +AoBi) . (16)

The deduction from (14) to (15) is explained in [17]. If

the spectral radius of the eigenvalues of Bi, ∀i ∈ [1, nτ ],
is smaller than 1 (i.e., ρ(Bi) < 1), the characteristic

matrix (15) converges. Effectively, an upper boundary

kmax of k has to be chosen to truncate the series of the

last right-hand side term of (15).

• The eigenvalues of (14) with characteristic matrix (15)

can be estimated through computing the eigenvalues of

the Chebyshev discretized matrix M of (15), where:



M =











diag(Ψ̂⊗ Ip, imax)

Ĉ1,N Ĉ1,N−1 . . . Ĉ1,0

... . . .
...

Ĉnτ ,N Ĉnτ ,N−1 . . . Ĉnτ ,0











,

⊗ indicates the tensor product or the Kronecker product,

Ψ̂ is a matrix composed of the first N − 1 rows of Ψ

defined as

Ψ = −2ΞN/τ ,

where ΞN is the Chebyshev discretization matrix of order

N . The matrices Ĉi,k are the interpolation matrices de-

fined according to Ci. The details about the interpolation

can be found in [17]. The eigenvalues of M are the

approximated eigenvalues of (12).

The key parameters that impact on the accuracy of the

approximated eigenvalues are the upper boundary kmax and

the order of Chebyshev discretization N . The parameters kmax

and N should be big enough to obtain relatively accurate

results [18]. However, considering that the Newton correction

discussed below can improve the accuracy of the eigenvalues,

kmax and N does not need to be large, which help to keep

the computational burden tractable.

2) Newton Correction: The eigenvalues obtained in the

previous step are inevitably affected by numerical errors.

The Chebyshev discretization, in particular, may introduce

spurious eigenvalues [13]. The Newton correction step aims

at improving the accuracy of the eigenvalues.

The approximated eigenvalues λ are utilized as the initial

guess of the Newton iterations on the characteristic equation

(10). For each approximated eigenvalue λn, the m-th Newton

iteration solves the equation:
[

δvn,m

δλn,m

]

=

[

rn,m r′n,mvn,m

vH
n,0 0

]−1 [

−rn,mvn,m

1− vH
n,0vn,m

]

, (17)

where:

rn,m = ∆(λn,m) , r′n,m =
dr

dλ
|λ=λn,m

λn,m = λn,m−1 + δλn,m−1 ,

vn,m = vn,m−1 + δvn,m−1 .

Consider a tolerance ǫ for the iteration. For each λn, the

iteration stops at m-th time if |δλn,m| < ǫ or ||rn,m||2 < ǫ, the

iteration result λn,m is the corrected eigenvalue. If m reaches

the maximal iteration, the iteration terminates without finding

any corrected eigenvalue. Reference [19] provides the details

of the Newton correction approach.

IV. CASE STUDY

The IEEE 14-bus system model serves to illustrate the

feasibility and robustness of the numerical approach discussed

above. The topology of the test system is shown in Fig. 2.

The IEEE 14-bus system includes an Automatic Voltage

Regulator (AVR) for each synchronous machine and a PSS

connected to the synchronous machine at bus 1 [20]. The
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Fig. 2: One-line diagram of the IEEE 14-bus system.
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Fig. 3: Power system stabilizer control diagram with compen-

sated input signal.

parameters of the controllers can be found in [21]. The signal

feeding the PSS is assumed to be delayed and compensated.

The control scheme of the PSS is shown in Fig. 3.

All simulations are obtained using the Python-based soft-

ware tool DOME [22]. The DOME version utilized here is based

on Fedora Linux 25, Python 3.6.2, CVXOPT 1.1.9, KLU 1.3.8,

and MAGMA 2.2.0.

A. Small-signal Stability Analysis

The IEEE 14-bus system is stable and well-damped (ζ =
96.01%) with τ = 0. The small-signal stability delay margin

of the system is about 95 ms. For τ ∈ [80, 95] ms, the system

is poorly damped (ζ < 5%).

The small-signal stability map of τ against Kτ is shown in

Fig. 4 to depict the effect of the proposed delay compensation

on the IEEE 14-bus system. The stability map is obtained

through 30 ∗ 50 times small-signal stability analysis through

the approach discussed in Section III for τ ∈ (0, 150] ms and

Kτ ∈ (0, 2].
The solution of the rightmost eigenvalue spectrum for each

given point in the parameter space takes about 1.3 s with N =
6 and kmax = 6 to solve the approximated eigenvalues; the

tolerance and the maximal iteration time of Newton Correction

are 10−5 and 20 respectively.

According to Fig. 4, the proposed delay-compensation tech-

nique can increase the small-signal stability delay margin from

95 to 130 ms and the well-damped delay margin from 80 to

125 ms, with the proper choice of the gain Kτ . Figure 4 also

shows that with the increase of delay magnitude τ , the range
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bus system. Shaded regions are stable. Dark shaded regions

indicate the damping ratio greater than 5%. The dashed line

is the stability delay margin of the system without delay

compensation.

of values of the gain Kτ that allow stabilizing the system or

provide good damping ratio becomes increasingly smaller.

B. N-1 Contingency Test

The effect of the proposed delay-compensation technique

is tested in this section against large-disturbances. In the

following, the delay of the PSS input signal is assumed to be

110 ms. The contingency is Line 2-5 outage. Three scenarios

with different compensation gains Kτ are compared to the

system without compensation. The corresponding pre- and

post-contingency rightmost eigenvalues are shown in Table I.

TABLE I: Rightmost eigenvalues of the IEEE 14-bus system

with delay compensation at PSS.

Kτ Pre-contingency Post-contingency

0.0 0.2718 ± j11.3779 0.3055 ± j11.3227

0.3 −0.0895± j11.8747 0.0067 ± j11.3287

1.0 −0.1319 ± j0.0384 −0.1316± j0.0390

1.8 −0.0312± j15.4017 −0.0254 ± j15.34760

According to Table I, the scenarios with Kτ = 1.0 and

1.8 remain stable at the post-contingency steady state. The

damping ratio ζ for the scenario Kτ = 1.0 is 95.87%. While

the scenario Kτ = 1.8 is poorly-damped for ζ = 0.17%.

The TDI results are consistent with the above analysis.

Figures 5 depict the frequency trajectories of Generator 1 of

each scenario following the contingency. The no-compensation

scenario shows that the system falls on a stable limit-cycle

following the contingency; the scenario Kτ = 0.3 mitigates

the oscillations at the beginning but it is unstable in the

post-contingency configuration, and thus oscillations increase

(slowly due to the small positive post-contingency eigenval-

ues). The other two scenarios with negative post-contingency

rightmost eigenvalues are always stable. The scenario Kτ =
1.0 is particularly well damped; whereas the poorly-damped

scenario Kτ = 1.8 shows small-amplitude oscillations at the

new steady state.
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Fig. 5: Line 2-5 outage for the IEEE 14-bus system Trajec-

tories of the frequency of Generator 1 with different delay

compensation gain Kτ .

To further understand the effect of the compensation gain

Kτ , Fig. 6 shows the trajectories of the non-delayed, delayed

and compensated signals for various values of the compensa-

tion gain Kτ .

According to Fig. 6, all the three compensated signals better

track the variation trend of original signals comparing with the

delayed signals. For Kτ = 0.3, the compensation effect is too

small to mimic the variation trend of the non-delayed signal;

while for Kτ = 1.8, the compensation amplifies too much the

dynamic variations of the original signal and, thus, decreases

the damping ratio comparing with the trajectory obtained for

Kτ = 1.0. Interestingly, even in the most stable scenario,

i.e., Kτ = 1.0, the compensated signal does not closely

approximate the original non-delayed frequency measure.

Finally, it is worth noting that the proposed compensation

technique does not require a perfect knowledge of the delay.

The compensation channel, in fact, depends on the product

Kτ τ . An approximated estimation of the average value of

the delay τ allows tuning the gain Kτ . Note also that the

compensation stabilizes the system in a range of values of

Kτ . The compensation channel is thus fairly robust.

V. CONCLUSIONS

This paper proposes a novel model-independent delay com-

pensation technique to mitigate the impact of time delays on

power system stability. The paper also provides a systematic

small-signal stability analysis approach of the system imple-

mented with the proposed compensation. The effect of the
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Fig. 6: Trajectories of non-delayed, delayed and compensated

frequency signals for the IEEE 14-bus systems for various

values of the compensation gain Kτ .

proposed technique is proved through the tests based on the

IEEE 14-bus system with inclusion of constant time delay.

Future work will extend the proposed technique to compen-

sate the realistic time-varying delays such as those described

in [19]. It also appears interesting to combine the proposed

technique with advanced control strategies. Especially if the

compensation gain Kτ is adaptive and updated according to

the variations of the delayed signal, the compensation tech-

nique should fulfill a better effect on improving the robustness

of power systems against time delays.
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