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Abstract—The paper proposes a Complex Frequency Contin-
uum Model (CFCM) to represent the propagation of voltage
dynamics along transmission lines. The proposed CFCM is based
on the concept of Complex Frequency (CF), recently proposed by
the second author. This model removes the assumption of small
voltage magnitude an phase angles in the transmission system,
which are the basis for a Linear Continuum Model (LCM) also
recently proposed by the second author. The paper identifies two
major differences between the CFCM and the LCM. On the
one hand, the former captures the nonlinearity of the spatial
rate of change of the CF. On the other hand, it recognizes the
cross-dependence between the real and imaginary parts of the
CF along a line. Time-domain simulations are carried out in a
case study whose transmission system operates highly loaded,
and the performance of the CFCM and the LCM are compared
to a PLL-based estimation of the CF at different points of a line.
Simulation results verify the accuracy of the proposed approach,
and show the errors introduced by the LCM in estimating the
CF at an intermediate point of a line.

I. INTRODUCTION

The increase of penetration of converter-interfaced devices
is changing how power systems are modeled, studied, con-
trolled, and operated [1]–[3]. A critical aspect of this transition
is the need for an appropiate definition, modelling and analysis
of local frequency dynamics [4]–[6]. A pioneer work in this
field is the Frequency Divider Formula [7], which provides a
way to estimate the frequency at every bus of the grid.

It is also relevant to investigate how voltage and frequency
dynamics propagate across the transmission system [8], [9].
A well-known model that represents the grid as a distributed
continuum proposed in the seminal work [10]. Therein, the
electromechanical wave theory was used to represent fre-
quency variations as travelling waves. However, this model
requires strong approximations such as linearizing the system,
lossless lines, and a ficticious distribution of the parameters
of the generators throughout the network. Further research
have ellaborated in partially removing the assumptions of
[10], investigated its properties and exploited its potential in
protection and control applications [11]–[15].

A recent work has provided an alternative continuum-based
approach based on the Frequency Divider Formula [16]. The
key difference with respect to [10] is that the model proposed
in [16] does not require to distribute the synchronous machines
since it works directly in the original system. Consequently,
the inconsistent fast dynamics or modes that appear with the
electromechanical wave approach are removed. However, the

model in [16] still requires neglecting voltage magnitude vari-
ations and assuming slight phase differences between consec-
utive buses. Under these circumstances, the authors show that
the frequency distributes linearly throughout the transmission
system. Nevertheless, the simplifications on which it is based
are questionable under high-loading conditions, or following
faults critical to voltage or rotor angle stability.

The frequency dynamics propagation is one side of the
problem. The complete voltage dynamics involve also the rate
of change of its magnitude. In this vein, the novel concept of
the complex frequency (CF) have been defined recently in [17],
allowing to conveniently represent the interactions between
complex power injections and voltage dynamics in magnitude
and phase. Recent works have shown the importance of this
term for the correct interpretation and analysis of the frequency
variations, as well as promising applications in power system
modelling, control and state estimation [18]–[21]. In this work,
we describe how the CF propagates along transmission lines,
thus providing a more complete and general approach than
those published so far.

The primary contribution of the paper is to provide a sys-
tematic approach to describe the voltage dynamics propagation
along transmission lines, namely, in magnitude and frequency,
through a general and compact formulation.

The remainder of the document is organized as follows. Sec-
tion II presents the Linear Continuum Model (LCM), which is
an extended version of the model in [16] including a analogue
equation for estimating the real part of the CF. Section III
presents the proposed Complex Frequency Continuum Model
(CFCM), and shows that it is a generalization of the FD-based
model. Section IV presents a comparison of the performance
of the LCM and the CFCM in a benchmark system using time-
domain simulations. Finally, conclusions and future work are
outlined in Section V.

II. LINEAR CONTINUUM MODEL

As mentioned in the introduction, previous works have
found that under negligible voltage magnitude variations and
minor phase differences between two consecutive buses the
frequency distributes linearly throughout a line [16]:

ω(x) =
xω0 + (1− x)ωl

l
, (1)

where x ∈ R | x ∈ [0, l] is the position of a point in a
line of length l, ω0 and ωl are the (known) frequencies at



the endpoints of the line. The spatial rate of change of the
frequency is constant and equal to:

∂ω(x)

∂x
=
ω0 − ωl

l
. (2)

The underlying assumption that leads to the expressions
above is that voltage magnitude variations are negligible (v0 ≈
vl ≈ const). However, since we are interested in assessing the
spatial continuity of the CF, i.e., η = ρ + jω, rather than
neglecting it, we assume an analogue linear expression for ρ
to complete the LCM. Thus:

ρ(x) =
xρ0 + (1− x)ρl

l
, (3)

∂ρ(x)

∂x
=
ρ0 − ρl

l
, (4)

or, equivalently:

η(x) =
xη0 + (1− x)ηl

l
(5)

Equation (5) provides a linear estimation of the CF of the
voltage at any intermediate point of the line x only in terms of
the CF at both ends (boundary conditions) and l. This model
is compared with the Complex Frequency Continuum Model
that is described in the following section and that removes the
abovementioned assumptions.

III. PROPOSED COMPLEX FREQUENCY CONTINUUM
MODEL

A. Derivation

Consider a transmission line of length l (km) which con-
nects bus 0 and bus l. The voltage at both ends is known
and denoted v0 and vl. Similarly, their CF is also considered
known thus acting as a boundary condition. They are denoted
as η0 and ηl. Let x ∈ R | x ∈ [0, l] be the position of a
point in the line (km) measured from bus 0 to bus l. The line
is represented through the well-known PI model of lumped
parameters with series impedance Z and shunt susceptance
B/2 at both ends. Finally, we assume that at any intermediate
point of the line, the model is split into two smaller PI blocks,
where the parameters are divided proportionally to x. Figure
1 illustrates the model described above. In the figure, the
following notation is used:

z =
Z

l
, b =

B

l
. (6)
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Fig. 1: Model of the line.

The model above allows us to define a function for the
voltage of the line v(x) : R → C with boundary conditions

at both ends of the line: v(0) = v0, v(l) = vl. The function
v(x) is found starting from the KCL at x:

0 =
v(x)− v0

xz
+
v(x)− vl
(l − x)z

+ v(x)j
B

2
, (7)

from where v(x) is obtained:

v(x) =
(l − x)v0 + xvl

1− jB2 z(l − x)x
. (8)

Similarly, we define the function of the complex frequency
of the line η(x) : R→ C as:

η(x) =
v̇(x)

v(x)
, (9)

where v̇(x) represents the time derivative of the voltage of the
line. At both ends of the line: η(0) = η0, η(l) = ηl.

Replacing (8) into (9):

η(x) =

(
(l − x)v0η0 + xvlηl

1− jB2 z(l − x)x

)(
1− jB2 z(l − x)x

(l − x)v0 + xvl

)

⇒ η(x) =
(l − x)v0η0 + xvlηl

(l − x)v0 + xvl
(10)

Equation (10) defines the CF of the voltage at any interme-
diate point of the line x only in terms of the voltages and CF
at both ends (boundary conditions) and l.

Next, we study the partial derivative ∂η(x)
∂x , which carries the

information of how the CF of the voltage continuously varies
throughout the transmission system. The calculation begins as
follows:

∂η(x)

∂x
=

(vlηl − v0η0)((l − x)v0 + xvl)

((l − x)v0 + xvl)2

− (vl − v0)((l − x)v0η0 + xvlηl)

((l − x)v0 + xvl)2
.

(11)

Simplifying the expression given by (11) leads to:

∂η(x)

∂x
= (ηl − η0)

vlv0l

((l − x)v0 + xvl)2
, (12)

or, equivalently:

∂η(x)

∂x
=

(ηl − η0)l(
v0
vl

+ vl
v0
− 2
)
x2 + 2l

(
1− v0

vl

)
x+ l2 v0vl

. (13)

At both ends, the expression yields:

∂η(x)

∂x |x=0
=

(ηl − η0)

l

(
vl
v0

)
(14)

∂η(x)

∂x |x=l
=

(ηl − η0)

l

(
v0
vl

)
. (15)

If we denote the complex nonlinear part of (13) as h(x):

h(x) =
l(

v0
vl

+ vl
v0
− 2
)
x2 + 2l

(
1− v0

vl

)
x+ l2 v0vl

(16)

Then:
∂η(x)

∂x
= (ηl − η0)h(x) . (17)



Finally, splitting the real and imaginary parts of (17) we obtain
the spatial rate of change of ρ and ω:

∂ρ(x)

∂x
= (ρl − ρ0)<{h(x)} − (ωl − ω0)={h(x)} , (18)

∂ω(x)

∂x
= (ωl − ω0)<{h(x)}+ (ρl − ρ0)={h(x)} . (19)

Equations (18) and (19) show two substantial differences
with the linear continuum model:

1) The complex frequency does not vary linearly
throughout the line. This is a consequence of the fact
that ∂ρ(x)∂x and ∂ω(x)

∂x depend on the position x along the
line.

2) There is a cross dependence between ρ and ω. This
is a consequence of the fact that h(x) is complex. Thus,
ω(x) is not only a function of ω0 and ωl, but also ρ0
and ρl.

B. Simplifications
We examine how the complex nonlinear term h(x) sim-

plifies considering commonly made assumptions that usually
hold in normal operating conditions. These are (i) the voltage
magnitude at both ends of the line is approximately the same,
i.e., v0 ≈ vl = v; and (ii) the angle difference is slight
enough to approximate the trigonometric functions as follows:
sin(θ0 − θl) ≈ (θ0 − θl), and cos(θ0 − θl) ≈ 1. Under
these assumptions, the coefficient accompanying x2 in (16)
vanishes:(

v0
vl
− vl
v0
− 2

)
≈ cos(θ0 − θl) + cos(θl − θ0)− 2 + ...

...+ j sin(θ0 − θl) + j sin(θ0 − θl) , (20)(
v0
vl
− vl
v0
− 2

)
≈ 2 cos(θ0 − θl)− 2 = 0 . (21)

Thus:
h(x) ≈ l

2l
(

1− v0
vl

)
x+ l2 v0vl

. (22)

Again, adopting the assumptions above simplifies to:

h(x) ≈ 1

l + j(θ0 − θl)(2x− l)
. (23)

Note that (θ0 − θl)(2x− l)� l for x ∈ [0, l], therefore:

h(x) ≈ 1

l
. (24)

Finally,
∂ρ(x)

∂x
≈ ρl − ρ0

l
, (25)

∂ω(x)

∂x
≈ ωl − ω0

l
, (26)

which are consistent with the linear continuum model de-
scribed in Section II. Therefore, the CFCM is a generalization
of the LCM. In conclusion, the higher the magnitude and
angle differences between voltages at both ends of a line,
the higher the error between the simplified and the proposed
continuum models. Cases of particular interest in this work are
long transmission lines or high-loading operating conditions.

IV. CASE STUDY

The Kundur’s two-area benchmark system is used to imple-
ment and compare the LCM and the proposed CFCM [22].
Figure 2 shows a single-line diagram of the system including
the values of some relevant variables of the operating point
studied. We are particularly interested in the line connecting
buses 7 and 9, which links the two areas of the system, each
of them composed of two synchronous generators.
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Fig. 2: Single line diagram of Kundur’s two-area system [22].

A time domain simulation is performed given the initial
conditions shown in Fig. 2. The load connected at bus 8 is
suddenly disconnected at t = 0.2 s. The frequency deviation
from the COI (∆ω) and the rate of change of the voltage
magnitude (ρ) are evaluated at different points of the line (steps
of 10% of the total length). We compare a PLL measurement at
that point1, an estimation through the LCM (equation (5)) and
the calculation given by the proposed CFCM (equation (10)).
The results for ω and ρ at the 30%, 50% and 70% of the line
are shown in Figs. 3 to 8. While the CFCM matches the direct
PLL measurement at every location, the LCM performs with a
noticeable error. This is due to the operating point being such
that there is a non-negligible voltage difference between the
two endpoints of the line, both in magnitude and phase. The
higher this difference, the higher the error introduced with the
LCM.

Finally, we calculate the Root Mean Squared Error (RMSE)
between both models and the PLL measurement at the points
of the line evaluated. This is done considering the first four

1Note that even though PLLs are commonly used to estimate the time
derivative of the angle, i.e., θ̇ = ω, an analogue architecture can also be used
to calculate the time derivative of any other algebraic variable. In this case,
it is used to get the time derivative of the voltage’s magnitude, and thus ρ.
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Fig. 3: Frequency deviation at 30% of the line: PLL, LCM and
CFCM.
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Fig. 4: Frequency deviation at 50% of the line: PLL, LCM and
CFCM.

seconds after the event. The results for ω and ρ are shown in
Figs. 9 and 10, respectively. As expected, the CFCM’s error
is nearly null. In contrast, the LCM’s error is noticeable and,
interestingly, more prominent for ρ than ω. The error curve has
a quadratic shape, with the maximum error at an intermediate
point, not necessarily right in the middle of the line.

V. CONCLUSION

The paper proposes a continuum model based on the con-
cept of complex frequency, namely CFCM, which describes
the propagation of voltage dynamics through transmission
lines, both in magnitude and angle. The proposed CFCM
captures the nonlinearity of the spatial rate of change of the CF
along a line and recognizes the cross dependence between ρ
and ω. The paper also shows that the CFCM is a generalization
of the LCM since the former simplifies to the latter under
proper approximations. The case study shows that, under high-
loading operating conditions, the CF along the line estimated
through the CFCM matches a PLL-based estimation. On the
other hand, the LCM shows a significant error, higher for
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Fig. 5: Frequency deviation at 70% of the line: PLL, LCM and
CFCM.
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Fig. 6: Rocov deviation at 30% of the line: PLL, LCM and CFCM.

ρ than for ω. The shape of the error resemble a quadratic
behavior, and the maximum occurs at an intermediate point
around the middle of the line. Future work will elaborate on
the consequences of considering each model and its possible
applications.
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[7] F. Milano and Á. Ortega, “Frequency divider,” IEEE Transactions on
Power Systems, vol. 32, no. 2, pp. 1493–1501, 2017.

[8] T. Li, G. Ledwich, Y. Mishra, J. H. Chow, and A. Vahidnia, “Wave aspect
of power system transient stability—part i: Finite approximation,” IEEE
Transactions on Power Systems, vol. 32, no. 4, pp. 2493–2500, 2017.

[9] T. Li, G. Ledwich, Y. Mishra, J. H. Chow, and A. Vahidnia, “Wave aspect
of power system transient stability—part ii: Control implications,” IEEE
Transactions on Power Systems, vol. 32, no. 4, pp. 2501–2508, 2017.

[10] A. Semlyen, “Analysis of disturbance propagation in power systems
based on a homogeneoue dynamic model,” IEEE Transactions on Power
Apparatus and Systems, vol. PAS-93, no. 2, pp. 676–684, 1974.

[11] J. Thorp, C. Seyler, and A. Phadke, “Electromechanical wave propa-
gation in large electric power systems,” IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, vol. 45, no. 6,
pp. 614–622, 1998.

[12] M. Parashar, J. Thorp, and C. Seyler, “Continuum modeling of elec-
tromechanical dynamics in large-scale power systems,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 51, no. 9, pp. 1848–
1858, 2004.

[13] H. Zhang, F. Shi, Y. Liu, and V. Terzija, “Adaptive online disturbance
location considering anisotropy of frequency propagation speeds,” IEEE
Transactions on Power Systems, vol. 31, no. 2, pp. 931–941, 2016.

0 22 44 66 88 110 132 154 176 198 220

Position in the line from bus 07 (km)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

ω
R

M
S
E

(r
a
d

/
s)

LCM ω-error

CFCM ω-error

Fig. 9: Root mean squared error for the frequency: LCM and CFCM.

0 22 44 66 88 110 132 154 176 198 220

Position in the line from bus 07 (km)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

ρ
R

M
S
E

(r
a
d
/
s)

LCM ρ-error

CFCM ρ-error

Fig. 10: Root mean squared error for the Rocov: LCM and CFCM.

[14] T. Bi, J. Qin, Y. Yan, H. Liu, and K. E. Martin, “An approach for
estimating disturbance arrival time based on structural frame model,”
IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 1741–1750,
2017.

[15] D. Huang, J. Qin, H. Liu, J. H. Chow, J. Zhao, T. Bi, L. Mili, and
Q. Yang, “An analytical method for disturbance propagation investiga-
tion based on the electromechanical wave approach,” IEEE Transactions
on Power Systems, vol. 36, no. 2, pp. 991–1001, 2021.

[16] G. Tzounas, I. Dassios, and F. Milano, “Frequency divider as a contin-
uum,” IEEE Transactions on Power Systems, vol. 37, no. 6, pp. 4970–
4973, 2022.

[17] F. Milano, “Complex frequency,” IEEE Transactions on Power Systems,
vol. 37, no. 2, pp. 1230–1240, 2022.

[18] D. Moutevelis, J. Roldan-Perez, M. Prodanovic, and F. Milano, “Tax-
onomy of power converter control schemes based on the complex
frequency concept,” arXiv preprint arXiv:2209.11107, 2022.

[19] F. Milano, B. Alhanjari, and G. Tzounas, “Enhancing frequency control
through rate of change of voltage feedback,” IEEE Transactions on
Power Systems, pp. 1–4, 2023.
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