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Time scales

• Typical time scales related to inertia and frequency control
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Time Scales of a Conventional Power System & CIG

• CIG controllers can be fast (is this good?)

of Converter−Interfaced Generation
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Electro-mechanical Dynamics – I

• Neglecting network topology, a conventional system where generation is attained with

synchronous generation can be represented as

Mω̇(t) = ps(t)− pl(t)− pj(t) ,

where

• M is the total inertia of the synchronous machines

• ω(t) is the average frequency of the system

• ω̇(t) is called Rate of Change of Frequency (RoCoF)

• ps is the power of synchronous machines

• pl + pj are load demand and losses respectively.
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Electro-mechanical Dynamics – II

• A system where generation is attained with synchronous as well as non-synchronous

generation can be represented as

M̃ω̇(t) = ps(t) + pns(t)− pl(t)− pj(t) ,

where

• M̃ is the total inertia of the synchronous machines, with M̃ < M or, in certain

periods and certain systems, M̃ ≪ M

• pns is the powers provided by CIG



Volatility of the inertia
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Acknowledgment: Thanks to A. Ulbig and G. Andersson for data and script to generate figure
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Extreme Case

• In a hypothetical system where there are no synchronous machines at all, M ≈ 0 and

the frequency is completely decoupled from the power balance of the system:

0 = pns(t)− pl(t)− pj(t)

• This opertaing condition has never really happened in large networks (only in

microgrids and small islanded systems)

• In this case, is still the frequency meaningful?
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Modelling

• Synchronous Generator

• “Physical” interaction due to inertia

• Control loops to replace inertial response

• Power Electronics Sources

• Interactions dominated by controls

• Time constants of control loops critical
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Drawbacks of CIG

• Reduce the inertia

• The local frequency must be measured (and properly defined) first!

• Often introduce volatility and uncertainty (e.g., wind and solar power plants)

• Often do not provide primary and/or secondary frequency control

• Since it is based on converter, its control can be potentially very fast
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Advantages of CIG

• Can provide primary and secondary control (if the resources are properly handled

and/or storage is included)

• Quantities other than the frequency can be utilized (voltage?)

• Since it is based on converter, its control can be potentially very fast
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All-Island Irish Grid
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All-Island Irish Transmission System

• 9500 MW of conventional plant

• 4500 MW of windfarms

• Peak 6500 MW; Valley 2500 MW

• Northern Ireland-Scotland 500 MW HVDC (LCC)

• Ireland-Wales 500 MW HVDC (VSC)

• In consideration:

– 700 MW HVDC Ireland-France: “Celtic Intercon-

nector”

– 500 MW HVDC Ireland-Wales: “Greenlink Inter-

connector”
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All-Island Irish Transmission System

• Despite this huge potential, wind intermittency lim-

its the capacity credit of wind.

• In 2016, 22% of the total annual energy was gener-

ated by wind.

• In 2017, 26.4% of the total annual energy was gen-

erated by wind.

• The goal for 2020 is that 37% of the total energy is

generated by wind.

• The figures and information of the next slides was

obtained from EriGrid Group.
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Installed Wind in the Irish System
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Wind Targets
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DS3 System Services
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Key Operational Milestones
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Impact of RoCoF Protections

• EirGrid has fixed that 65% of CIG is the stability limit
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Australian Grid
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Australian National Electric Market
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28 September 2016 Event: Impact of the Tesla Battery
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25 August 2018 Event: Pre-contingency Conditions
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25 August 2018 Event: Post-contingency Conditions
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25 August 2018 Event: Regional Frequencies
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25 August 2018 Event: Regional RoCoFs during the Event
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25 August 2018 Event: Tesla Battery Response
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Pros and Cons of the Battery Dynamic Response

• The battery has a very fast response and is able to recover the frequency drop but . . .

• . . . there is a catch: fast transfer through interconnectors require headroom and ramp

constraints

• The fast power ramp due to the battery has caused the intervention of the protection

• The tuning of such protection was again based on the assumption of a “slow”

frequency control response by conventional generation.
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Conclusions
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Overall Remarks

• Low-inertia system often show new kinds of instability, that are not well-known to

system operators.

• Stability depends on both system dynamics and topology (see events in Australia)

• Power electronic dynamics (possibly very fast, < 5 ms) might have an important role

and should be modelled accurately.

• There is no satisfactory solution to predicting and arresting cascading collapse; beyond

a certain tipping point the blackout is inevitable, and recovery became the priority.
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Recommendations

• Proper control of CIG is crucial.

• The role of large and fast energy storage systems (batteries) can be key.

• Retuning/rethinking existing protection schemes appears inevitable

• It might be necessary to fully rethink the entire model of power systems (what if

frequency is not a relevant signal anymore?)
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The Challenge is to Look for Reliable Solutions . . .
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Thanks much for your attention!


