Fast Frequency Control of Low-Inertia Systems The Examples of the Irish and the Australian Transmission

Prof. Federico Milano

Email: federico.milano@ucd.ie

Webpage: faraday1.ucd.ie

School of Electrical & Electronic Engineering

University College Dublin

Dublin, Ireland

Time scales

• Typical time scales related to inertia and frequency control

Time Scales of a Conventional Power System & CIG

• CIG controllers can be fast (is this good?)

Electro-mechanical Dynamics – I

 Neglecting network topology, a conventional system where generation is attained with synchronous generation can be represented as

$$M\dot{\omega}(t) = p_{\rm s}(t) - p_{\rm l}(t) - p_{\rm j}(t) \,,$$

where

- $\bullet \ M$ is the total inertia of the synchronous machines
- $\omega(t)$ is the average frequency of the system
- $\dot{\omega}(t)$ is called Rate of Change of Frequency (RoCoF)
- $\bullet \ p_{\rm s}$ is the power of synchronous machines
- $p_{\rm l} + p_{\rm j}$ are load demand and losses respectively.

Electro-mechanical Dynamics – II

• A system where generation is attained with synchronous as well as non-synchronous generation can be represented as

$$\tilde{M}\dot{\omega}(t) = p_{\mathrm{s}}(t) + p_{\mathrm{ns}}(t) - p_{\mathrm{l}}(t) - p_{\mathrm{j}}(t) ,$$

where

- \tilde{M} is the total inertia of the synchronous machines, with $\tilde{M} < M$ or, in certain periods and certain systems, $\tilde{M} \ll M$
- $p_{\rm ns}$ is the powers provided by CIG

Volatility of the inertia

Acknowledgment: Thanks to A. Ulbig and G. Andersson for data and script to generate figure

Extreme Case

• In a hypothetical system where there are no synchronous machines at all, $M \approx 0$ and the frequency is completely decoupled from the power balance of the system:

$$0 = p_{\rm ns}(t) - p_{\rm l}(t) - p_{\rm j}(t)$$

- This opertaing condition has never really happened in large networks (only in microgrids and small islanded systems)
- In this case, is still the frequency meaningful?

Modelling

- Synchronous Generator
 - "Physical" interaction due to inertia
 - Control loops to replace inertial response
- Power Electronics Sources
 - Interactions dominated by controls
 - Time constants of control loops critical

Drawbacks of CIG

- Reduce the inertia
- The local frequency must be measured (and properly defined) first!
- Often introduce volatility and uncertainty (e.g., wind and solar power plants)
- Often do not provide primary and/or secondary frequency control
- Since it is based on converter, its control can be potentially very fast

Advantages of CIG

- Can provide primary and secondary control (if the resources are properly handled and/or storage is included)
- Quantities other than the frequency can be utilized (voltage?)
- Since it is based on converter, its control can be potentially very fast

All-Island Irish Grid

All-Island Irish Transmission System

- 9500 MW of conventional plant
- 4500 MW of windfarms
- Peak 6500 MW; Valley 2500 MW
- Northern Ireland-Scotland 500 MW HVDC (LCC)
- Ireland-Wales 500 MW HVDC (VSC)
- In consideration:
 - 700 MW HVDC Ireland-France: "Celtic Interconnector"
 - 500 MW HVDC Ireland-Wales: "Greenlink Interconnector"

All-Island Irish Transmission System

- Despite this huge potential, wind intermittency limits the capacity credit of wind.
- In 2016, 22% of the total annual energy was generated by wind.
- In 2017, 26.4% of the total annual energy was generated by wind.
- The goal for 2020 is that 37% of the total energy is generated by wind.
- The figures and information of the next slides was obtained from EriGrid Group.

Installed Wind in the Irish System

Wind Targets

DS3 System Services

Key Operational Milestones

	2017	2018	2019	2020
SNSP	60% -> 65%	65% -> 70%	70% -> 75%	75%
RoCoF	0.5 Hz/s	0.5 -> 1 Hz/s	1 Hz/s	1 Hz/s
Inertia	23,000 MW.s	20,000 MW.s	17,500 MW.s	17,500 MW.s
Min Sets	8	8	7	7
Exports	300 -> 500 MW (interim)	500 MW (interim)	500 MW (interim -> enduring)	500 MW (enduring)
System Services	Current providers, 11 Services		New providers, 1 volumes t	4 Services, increased o operate at high RES

Impact of RoCoF Protections

• EirGrid has fixed that 65% of CIG is the stability limit

Australian Grid

Australian National Electric Market

28 September 2016 Event: Impact of the Tesla Battery

25 August 2018 Event: Pre-contingency Conditions

25 August 2018 Event: Post-contingency Conditions

25 August 2018 Event: Regional Frequencies

25 August 2018 Event: Regional RoCoFs during the Event

25 August 2018 Event: Tesla Battery Response

Pros and Cons of the Battery Dynamic Response

- The battery has a very fast response and is able to recover the frequency drop but ...
- ... there is a catch: fast transfer through interconnectors require headroom and ramp constraints
- The fast power ramp due to the battery has caused the intervention of the protection
- The tuning of such protection was again based on the assumption of a "slow" frequency control response by conventional generation.

Conclusions

Overall Remarks

- Low-inertia system often show new kinds of instability, that are not well-known to system operators.
- Stability depends on both system dynamics and topology (see events in Australia)
- Power electronic dynamics (possibly very fast, < 5 ms) might have an important role and should be modelled accurately.
- There is no satisfactory solution to predicting and arresting cascading collapse; beyond a certain tipping point the blackout is inevitable, and recovery became the priority.

Recommendations

- Proper control of CIG is crucial.
- The role of large and fast energy storage systems (batteries) can be key.
- Retuning/rethinking existing protection schemes appears inevitable
- It might be necessary to fully rethink the entire model of power systems (what if frequency is not a relevant signal anymore?)

The Challenge is to Look for Reliable Solutions ...

Thanks much for your attention!

