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Summary
OPF is nonconvex & NP hard

OPF is “easy” to solve in practice
n Semidefinite relaxations often exact
n Local algorithms often globally optimal

Theoretical support
n Exact relaxation
n No spurious local optima
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Optimal power flow

Ian Hiskens, Michigan

OPF is nonconvex
§ Nonlinear power flow equations
§ Operational constraints, e.g., 𝑉!"# ≤ 𝑉 ≤ 𝑉!$%
§ (Discrete variables, e.g., unit commitment, battery opt)
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Optimal power flow
OPF is NP-hard

§ Verma 2009, Bienstock & Verma 2019
§ Lavaei & Low 2012
§ Lehmann, Grastien & Van Hentenryck 2016 

Reduce NP-hard 
subset sum problem to:

Find Θ!, 𝑝[!#], 𝑞[!#] s.t. power flow equations & constraints
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a lower bound on reactive power. There is a beautiful geometric
interpretation of these conditions and the role of bounds on reac-
tive power (e.g., [8], [5]). Indeed, these geometric studies show
that the feasible set for each line is an ellipse and ac-feasibility
is polynomial-time solvable if there is no constraint on reactive
power. Bounds on reactive power divide the ellipses and our
hardness result can be interpreted geometrically as indicating
that this division makes the problem NP-hard.
Observe that the general ac-feasibility problem on trees is

NP-hard even if the proof only uses instances where the voltage
magnitudes are fixed. In general, NP-hardness proofs only use
a subset of instances in the encodings and this is sufficient to
show the hardness results which are worst-case. In this par-
ticular case, the hardness proof indicates that, if there exists
a polynomial-time algorithm for deciding ac-feasibility of ar-
bitrary tree networks with arbitrary bounds on voltage magni-
tudes, injections, loads, and phase angles, then it must be the
case that P NP, since the encoding instances are special cases
of this general problem. Note also that, for simplicity, the proof
does not show membership to NP, since potential solutions may
involve irrational numbers that cannot be represented in finite
space. Hence a simple argument based on checking feasibility
in polynomial time cannot be used to show NP-membership in
this case.

II. PROBLEM DEFINITION

Here, we present the problem description and the assump-
tions underlying the proof. Our ac-feasibility problem receives
as input fixed demands for real ( ) and reactive ( ) power. It
fixes all voltage magnitudes to one and assumes that lines have a
maximum phase angle difference . The proof also
assumes a susceptance and conductance and im-
poses a natural condition on the relationship between , and
.
In the model, the set of buses is defined as the disjoint

union of the set of loads and the set of generators . Hence
every bus is either a generator or a load (with possibly 0 de-
mand). is the set of lines and is the set of di-
rected lines. For a line , we use the notation to indication
the line susceptance and conductance .
With these assumptions and notations, the ac-feasibility

problem consists in finding the phase angles , the real power
flows , and the reactive power flows satisfying

This formulation uses phase angles and a bound on phase angles
since this makes the proof simpler. Phase angles are not typi-
cally used in optimization over tree networks. However there
is no loss of generality in this formulation since, under the as-
sumption that the voltage magnitude is one, imposing a max-
imum phase angle difference is equivalent to enforcing a line
capacity (thermal limit). Indeed, the maximum phase angle dif-
ference implies a capacity of

For a given capacity and taking into account that the phase
angle difference has to be within , we can define a
maximum phase angle difference as

if
otherwise.

III. AC-FEASIBILITY ON STAR NETWORKS IS NP-HARD

We prove in this section that the ac-feasibility of an ac net-
work with a star structure and one load is NP-hard. A graph with

nodes is called a star if it is a connected tree with leaves
and one non-leave node. The inspiration underlying the proof
came from the 2-bus example in [10] that exhibits disconnected
feasibility regions.
Let . The key element of the proof is that, for

any choice of and , the ratio between real and reactive power
is unique with respect to the phase angle difference . This is
captured in the following lemma, which also uses the following
notations for clarity:

Lemma 1: Let be a line with
and . The following statements

are true:

(1)
(2)

Proof: To simplify notations we define ;
and . Let us assume that . Using
the fact that the tangent is strongly monotonic increasing within
the interval , we have

Using the trigonometric identity
and multiplying both sides of the last
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Empirical experiences
OPF is “easy” to solve in practice

n Relaxations often exact
n Local solutions often globally optimal

Simulation results
#vars #constrs IPM (sec) |S|2/vl Eig-ratio

IEEE 
13-bus

97 40 0.28 1.0000 2.10e-16

IEEE 
34-bus

287 120 0.50 1.0000 3.09e-16

IEEE 
37-bus

306 126 0.30 1.0000 2.45e-16

IEEE 
123-bus

1,030 436 0.41 1.0000 3.31e-16

SCE 
47-bus

387 168 0.56 1.0000 2.68e-14

SCE 
56-bus

398 173 0.59 1.0000 7.85e-17

SCE Rossi 
2145-bus

16,593 6,683 2.20 0.9997 3.71e-16

SOCP is exactSOCP is fast

ARPAe NODES quarterly review (Caltech 2013 Sept)
Comparison (mesh)

28

(a set is said to be simply connected if any 2 paths from one point to another can be continuously

transformed, staying within the set).

B. IEEE benchmark systems

For IEEE benchmark systems [38], [39], we solve R1, R2 and Rch in MATLAB using CVX

[55] with the solver SeDuMi [56]. The objective values and running times are presented in Table

II. The problems R1 and Rch have the same optimal objective value, i.e., r⇤1 = r
⇤
ch

, as predicted

by Theorem 1. Moreover an optimum of OPF can be recovered from the optimum of R1 or Rch

that is computed by the algorithm (after some minor modifications to the resistances on some

lines [16]). The optimal objective value of R2 is lower (r⇤2 < r
⇤
1), indicating that the optimum

of the SOCP relaxation that is computed is not feasible for P1. As Table II shows, Rch is much

faster than R1. The chordal extensions of the graphs are computed a priori for each case [33].

R2 is faster than both R1 and Rch, but yields an infeasible solution for most IEEE benchmark

systems considered.

TABLE II: Optimal objective values and running times on IEEE systems.

Test case Objective values ($/hr) Running times (sec)

R1, Rch R2 R1 Rch R2

9 bus 5297.4 5297.4 0.2 0.2 0.2

14 bus 8081.7 8075.3 0.2 0.2 0.2

30 bus 574.5 573.6 0.4 0.3 0.3

39 bus 41889.1 41881.5 0.7 0.3 0.3

57 bus 41738.3 41712.0 1.3 0.5 0.3

118 bus 129668.6 129372.4 6.9 0.7 0.6

300 bus 720031.0 719006.5 109.4 2.9 1.8

2383 bus 1840270 1789500.0 - 1005.6 155.3

VI. CONCLUSION

In this paper, we have presented various conic relaxations of OPF and their relations in both

the bus-injection model and the branch-flow model. In the bus-injection model the SDP-based

relaxations R1 and Rch are equivalent and are generally tighter than the SOCP-based relaxation

R2. For acyclic power networks however these relaxations are equivalent. The branch flow

July 31, 2013 DRAFT

SDP not 
scalable

SOCP
inexact

SDP/ch SOCP SOCPSDP chordal

SOCP is exact (radial) SDP is exact (mesh)



Empirical experiences
OPF is “easy” to solve in practice

n Relaxations often exact
n Local solutions often globally optimal

ARPAe NODES quarterly review (Caltech 2013 August)

SQP starting from relaxation optimal (mesh)

SQP accuracy

Network % inc from SDP % inc from 
chordal SDP

% inc from 
SOCP

9-bus (line 3 = 34) 0.32 0.32 7
9-bus (line 3 = 35) 0.20 0.20 6.4
30-bus (line 33 = 7.5) 
flow_move_factor = 2 0.45 0.45 3.24

30-bus (line 33 = 8) 0.11 0.11 2.29
39-bus (line 2 = 220) 
flow move_factor = 4 0.01 0.01 0.31

SQP corrects for the 
inaccuracies of SOCP

< 0.5%

Local algorithms attain global optimal
or is close (<0.5% optimality gap)
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Empirical experiences

• Semidefinite relaxations are often exact
• Enhancements (e.g., adding valid cuts) closes almost all optimality gaps (<1%) 

Fig. 2. Case 9

case9 case9 tree
gap time gap time

OBBT & RLT 10.20 10.27 0.66 6.00
OBBT & SDP no RLT 10.82 8.07 5.33 6.89

OBBT & SDP & RLT (SDP-BT) 0.44 10.19 0.66 6.03

TABLE I
OPTIMALITY GAPS AND COMPUTATION TIME FOR DIFFERENT

RELAXATIONS ON CASE9 AND CASE9 TREE.

We conjecture that higher order determinant constraints further
tighten the lower bounds on the power loss and that performing
bound tightening triggers a positive cycle where the relaxation
gets stronger and the bounds get smaller in an alternating
fashion.

C. PGLIB 19.05
We run Algorithm 1 on all instances in [23] having less

than 300 buses. The results from the numerical experiments
are shown in Table II where instances with an initial gap ° 1%
are highlighted in bold. For each case we report the root gap
before calling SDP-BT, the final gap after running SDP-BT, as
well as the number of iterations and the total wall clock time
(in seconds) of the algorithm (T.L. indicating that we hit the
time limit). We also report the level 1 and 2 Lasserre Hierarchy
gaps (gap1 and gap2) as well as the corresponding total wall-
clock time. Note that level 1 Lasserre Hierarchy relaxation
includes the lifted nonlinear cuts (LNC) introduced in [26].
Missing entries correspond to instances where the code ran out
of memory. Starred entries refer to Mosek reporting unknown
primal and dual status. The SDP-BT algorithm manages to
decrease the optimality gap to less than 1% on all tested

instances. The root node gap from Model 3 is tight and closes
the gap in 38 out of 48 instances. It is worth mentioning that
the number of iterations taken by the SDP-BT algorithm is
typically small, taking only one iteration to converge on all
but 2 instances.

D. NESTA 0.3 [20]
In this section, we present an extensive comparison of

SDP-BT’s performance, on all instances having less than
300 nodes with state-of-the-art results published in [20]. The
results are reported in Table III. In the last four columns,
we report optimality gaps and computation times for both
the root node relaxation (including OBBT + cut generation)
and the Branch&Cut algorithm developed in [20]. The SDP-
BT algorithm closes the gap on 55 out of 57 instances,
outperforming the root node relaxation reported in [20] on all
instances and closing 4 instances more than the Branch&Cut
algorithm.

SDP-BT Lasserre relaxation
Case root gap final gap time iter gap1 time1 gap2 time2
pglib opf case3 lmbd 0.00 0.00 0.08 0 0.38 0.01 0.00 0.23
pglib opf case5 pjm 0.09 0.09 0.13 0 5.22 0.01 0.00 20.87

pglib opf case14 ieee 0.00 0.00 0.50 0 0.00 0.22 0.00 141.99
pglib opf case24 ieee rts 0.00 0.00 0.86 0 0.00 0.19 - -
pglib opf case30 as 0.00 0.00 0.85 0 0.00 0.14 0.00 5924.40
pglib opf case30 fsr 0.00 0.00 0.71 0 0.01 0.23 - -
pglib opf case30 ieee 0.00 0.00 0.68 0 0.02 0.17 - -
pglib opf case39 epri 0.00 0.00 1.47 0 0.01 0.23 0.00 1336.31
pglib opf case57 ieee 0.00 0.00 1.62 0 0.01 0.40 - -
pglib opf case73 ieee rts 0.00 0.00 3.54 0 0.00 0.60 - -
pglib opf case89 pegase 0.29 0.29 12.96 0 0.34 1.97 - -
pglib opf case118 ieee 0.03 0.03 3.18 0 0.07 1.29 - -
pglib opf case162 ieee dtc 1.57 0.45 5723.00 1 1.78 5.83 - -

pglib opf case179 goc 0.07 0.07 6.98 0 0.07 1.64 - -
pglib opf case200 tamu 0.00 0.00 7.11 0 0.00 1.47 - -
pglib opf case300 ieee 0.10 0.10 18.99 0 1.56 3.45 - -

pglib opf case3 lmbd api 0.93 0.93 0.10 0 4.99 0.01 0.00 0.20

pglib opf case5 pjm api 0.01 0.01 0.20 0 0.30˚ 0.04˚ 0.00 19.33
pglib opf case14 ieee api 0.01 0.01 0.62 0 0.02 0.06 0.00 143.71
pglib opf case24 ieee rts api 1.03 0.03 21.42 1 2.07 0.21 - -

pglib opf case30 as api 0.72 0.72 0.82 0 16.19˚ 0.21˚ 0.39 9807.31
pglib opf case30 fsr api 0.27 0.27 2.24 0 0.52 0.20 - -
pglib opf case30 ieee api 0.02 0.02 0.74 0 0.34˚ 0.17˚ - -
pglib opf case39 epri api 0.16 0.16 0.71 0 0.46 0.26 0.01 1973.40
pglib opf case57 ieee api 0.00 0.00 3.34 0 0.02 0.51 - -
pglib opf case73 ieee rts api 2.13 0.75 261.14 1 2.92 0.65 - -

pglib opf case89 pegase api 11.70 0.93 6013.07 3 12.12 2.27 - -

pglib opf case118 ieee api 8.44 0.99 2030.47 5 11.20 1.26 - -

pglib opf case162 ieee dtc api 1.26 0.26 16277.76 1 1.44 5.33 - -

pglib opf case179 goc api 0.54 0.54 9.01 0 0.55 1.35 - -
pglib opf case200 tamu api 0.00 0.00 39.17 0 0.00 2.05 - -
pglib opf case300 ieee api 0.07 0.07 21.87 0 0.21 3.45 - -
pglib opf case3 lmbd sad 0.10 0.10 0.08 0 0.62 0.01 0.00 0.21
pglib opf case5 pjm sad 0.00 0.00 0.20 0 0.00 0.03 0.00 18.36
pglib opf case14 ieee sad 0.11 0.11 0.36 0 0.09 0.10 0.00 148.34
pglib opf case24 ieee rts sad 3.54 0.11 21.69 1 2.52 0.17 - -

pglib opf case30 as sad 0.21 0.21 0.95 0 0.16 0.25 0.00 6529.10
pglib opf case30 fsr sad 0.02 0.02 0.69 0 0.02 0.19 - -
pglib opf case30 ieee sad 0.00 0.00 0.84 0 0.00 0.16 - -
pglib opf case39 epri sad 0.02 0.02 1.36 0 0.02 0.24 - -
pglib opf case57 ieee sad 0.04 0.04 4.14 0 0.04 0.63 - -
pglib opf case73 ieee rts sad 2.13 0.33 228.97 1 1.48 0.58 - -

pglib opf case89 pegase sad 0.29 0.29 12.35 0 0.32 1.95 - -
pglib opf case118 ieee sad 2.49 0.18 471.40 1 1.83 1.21 - -

pglib opf case162 ieee dtc sad 1.38 0.28 3666.39 1 1.79 5.63 - -

pglib opf case179 goc sad 0.94 0.94 15.01 0 0.91 1.59 - -
pglib opf case200 tamu sad 0.00 0.00 8.50 0 0.00 1.64 - -
pglib opf case300 ieee sad 0.12 0.12 13.98 0 1.40 3.28 - -

TABLE II
PGLIB 19.05 RESULTS

VI. CONCLUSION AND FUTURE WORK

Parallelizing global optimization algorithms is not a trivial
task. The SDP-BT algorithm and the underlying code we
present here relies solely on open-source tools and can take full
advantage of computational clusters using state-of-the-art MPI
libraries. In our experiments, we showcase the performance of
SDP-BT on a small cluster of 10 machines, closing the gap
on a number of open test cases from the literature.

Several avenues for further investigation remain. The level 2
Lasserre Hierarchy, which involves the solution of large SDPs,
may be solved efficiently using the Determinant Hierarchy
presented here. We are also looking at generating outer-
approximation cuts that would lead to linear Determinant
Hierarchies. Finally, we are working on integrating our con-
tributions into an adaptive variable partitioning algorithm [33]
which will allow us to tackle larger instances.
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Summary
OPF is nonconvex & NP hard

OPF is “easy” to solve in practice
n Semidefinite relaxations often exact
n Local algorithms often globally optimal

Theoretical support
n Exact relaxation
n No spurious local optima



Theoretical support
Exact relaxations

§ Sufficient condition (radial): angle difference
§ Sufficient condition (radial): injection bounds
§ Sufficient condition (3phase radial): critical buses



Exact relaxation
Exact relaxation: radial networks

§ Caltech [2011, 2012, 2013]: Bose, Chandy, Chen, Gayme, Farivar, 
Gan, Lavaei, Li, Low, Sojoudi, Topcu

§ Berkeley/UIUC [2011, 2013]: Dominguez-Garcia, Lam, Lavaei, Tse, 
Zhang

§ …. Recent surveys: Low 2014, Molzach & Hiskens 2019

Exact relaxation: meshed networks
§ Kim & Kojima (Comp Opt App 2003): only real QCQP 
§ Zhou & Low (CDC 2019): multiphase radial network
§ Burer & Ye (Math Prog 2020): diagonal QCQP
§ Azuma et al (arXiv 2020): forest-structured network



Global optimality
Theoretical support
q Exact relaxation: known sufficient conditions

q No spurious local optima: widely observed empirically, 
but no analytical evidence till recently

A Sufficient Condition for Local Optima to be Globally Optimal

Fengyu Zhou and Steven H. Low
Engineering & Applied Science, Caltech, Pasadena CA

Abstract— Consider an optimization problem with a convex

cost function but a non-convex compact feasible set X , and its

relaxation with a compact and convex feasible set X̂ � X . We

prove that if from any point x 2 X̂ \X there is a path connecting

x to X along which both the cost function and a Lyapunov-like

function are improvable, then any local optimum in X for the

original non-convex problem is a global optimum. We use this

result to show that, for AC optimal power flow problems, a well-

known sufficient condition for exact relaxation also guarantees

that all its local optima are globally optimal. This helps explain

the widespread empirical experience that local algorithms for

optimal power flow problems often work extremely well.

I. INTRODUCTION

Motivation. Optimal power flow (OPF) is a class of con-
strained optimization problems that minimizes certain cost
subject to nonlinear physical laws and operational con-
straints. OPF is fundamental in power systems as it under-
lies numerous power systems applications. It is non-convex
and NP-hard [1], [2]. Traditionally OPF problems have
been solved mostly using local algorithms such as Newton-
Raphson or interior-point methods (e.g. [3]). Over the last
decade various convex relaxations have been developed for
solving OPF; see [4] and references therein. Empirically,
convex relaxation methods often produce globally optimal
solutions. More significantly, they provide a way to check
the quality of the solutions produced by local algorithms.
When verified against convex relaxations, these local algo-
rithms turn out to often produce globally optimal solutions.
This is useful as local algorithms are much more scalable
than semidefinite relaxations. While sufficient conditions are
known that guarantee the exactness of semidefinite relax-
ations (see surveys in [5], [4]), to the best of our knowledge,
no analytical result is known that explains the remarkable
performance of local algorithms on OPF problems. In this
paper we provide the first sufficient condition for local
optima of OPF to be globally optimal.

Summary. Specifically consider an optimization problem
with a convex cost function but a non-convex compact
feasible set X , and its relaxation with a compact and convex
feasible set X̂ � X . We prove that if there is a Lyapunov-
like function that only vanishes over X , and from any point

This work was funded by NSF through grants CCF 1637598, ECCS
1619352, ECCS 1931662 and CPS ECCS 1739355.

Fengyu Zhou is with the Department of Electrical Engineer-
ing, California Institute of Technology, Pasadena, CA, 91125. Email:
f.zhou@caltech.edu

Steven H. Low is with the Department of Electrical Engineering and the
Department of Computing and Mathematical Sciences, California Institute
of Technology, Pasadena, CA, 91125. Email: slow@caltech.edu

x 2 X̂ \ X there is a path connecting x to X along which
both the cost function and the Lyapunov-like function are
improvable, then any local optimum in X for the original
non-convex problem is a global optimum. We use this result
to show that, for AC OPF over radial networks, a well-known
sufficient condition for exact relaxation also guarantees that
all its local optima are globally optimal. This helps explain
the widespread empirical experience that local algorithms for
OPF often work extremely well.

Beyond OPF. Though motivated by OPF, our main results
(Theorems 1 and 2) are applicable to general non-convex
optimization problems. These problems frequently arise in
applications. Many cyber-physical systems, for instance,
are governed by nonlinear physical laws that render their
optimization non-convex. Most machine learning problems
are non-convex problems since nonlinear models such as
neural networks have a powerful representability of real data
[6]. For some classes of non-convex problems, even solving
them approximately is NP-hard [7]. Yet for many non-convex
problems in signal processing and machine learning (e.g.,
dictionary learning, phase retrieval, sparse coding, matrix
completion, low-rank semidefinite programs), simple local
algorithms such as gradient descent or alternating minimiza-
tion often produce globally optimal solutions. Some of the
theoretical explanations for this phenomenon are summarized
in [8], [9], [10], [11] and references therein. A common
method is to study the gradient and curvature of the cost
function over the feasible set and show that (i) all local
optima are globally optimal, and (ii) any local maximum
or saddle point always has a negative curvature in an eigen
direction of the Hessian. This implies that a stochastic
gradient descent or a well designed local algorithm can easily
escape local maxima or saddle points to produce a global
solution [12], [13], [8], [9]. Another technique, developed
in [10], treats the non-convex sparse decoding problem as a
convex problem with an unknown gradient and proves that
alternative minimization is a gradient descent algorthim with
approximate gradients that approach the true gradient.

These methods analyze the optimization landscape through
the gradient and curvature of the cost function and usually
require that the feasible set X has a simple structure, e.g.,
polytopes or spherical surface. When the feasible set X is a
high dimensional manifold with highly non-convex features,
it may be difficult to compute the gradient or curvature of
the cost function over X .

In contrast, our method is applicable to such a problem
with a highly non-convex feasible set X because we leverage

CDC 2020
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instances which have no spurious local optima. In contrast,
many real-world non-convex problems do fall within such
intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
set is not a Riemannian manifold, or the Riemannian gradient
and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.

Our conditions have two parts. The first part, which also
appeared in [18], is on the sufficient condition. Roughly speak-
ing, if for any relaxed point, there exists a path connecting it
to the non-convex feasible set and the path satisfies

• along the path the cost is non-increasing,
• along the path the ‘distance’ to the non-convex feasible

set is non-increasing,
then the problem must have exact relaxation and no spurious
local optima simultaneously. Here the ‘distance’ can be any
properly constructed function, as we will define later as a
Lyapunov-like function (Definition 10). The second part is on
the necessary condition, which says that if a problem does have
exact relaxation and no spurious local optima simultaneously,
then there must exist such Lyapunov-like function and paths
satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed
to exist, for specific problems it could still be difficult to find
or construct them. We then derive certain rules to construct
the Lyapunov-like function and paths of a new problem from
primitives problems with known Lyapunov-like function and
paths. This process allows us to reuse and extend known
results as the problem changes and grows. Finally, we apply
the proposed approach to two specific problems, Optimal
Power Flow and low rank SDP. Our work proves the first
known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
non-convex problem [25], [26], [9], [27]. In the recent years,
there have been considerable analytical works on the provable
conditions for the relaxation exactness, which are summarized
in the reviews [28], [29] and references therein. However, few
analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
authors’ knowledge, this is the first analytical result of its kind,
and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x 2 X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x 2 X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ✓ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ ! R is convex and
continuous over X̂ . We do not require the relaxation X̂ to be
efficiently represented.

Definition 1. A point xlo
2 X is called a local optimum of

(1) if there exists a � > 0 such that f(xlo)  f(x) for all
x 2 X with kx� xlo

k < �.

Definition 2 (Strong Exactness). We say the relaxation (2) is
exact with respect to (1) if any optimal point of (2) is feasible,
and hence globally optimal, for (1).

Unless otherwise specified, we will always use the term
exact to refer to such strong exactness. Definition 2 implies
in particular that, if (2) is exact, then 8x̂ 2 X̂ \ X , f(x̂) >
minx2X̂

f(x).

Definition 3. A path in S ✓ Kn connecting point a to point
b is a continuous function h : [0, 1] ! S such that h(0) = a
and h(1) = b.

We may refer to a path by the corresponding function h in
the remainder of the paper.

Lemma 1. The following are equivalent:

Convex relaxation:
!𝑋 : compact, convex, 𝑋 ⊆ !𝑋 ⊆ 𝐾!
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instances which have no spurious local optima. In contrast,
many real-world non-convex problems do fall within such
intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
set is not a Riemannian manifold, or the Riemannian gradient
and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.

Our conditions have two parts. The first part, which also
appeared in [18], is on the sufficient condition. Roughly speak-
ing, if for any relaxed point, there exists a path connecting it
to the non-convex feasible set and the path satisfies

• along the path the cost is non-increasing,
• along the path the ‘distance’ to the non-convex feasible

set is non-increasing,
then the problem must have exact relaxation and no spurious
local optima simultaneously. Here the ‘distance’ can be any
properly constructed function, as we will define later as a
Lyapunov-like function (Definition 10). The second part is on
the necessary condition, which says that if a problem does have
exact relaxation and no spurious local optima simultaneously,
then there must exist such Lyapunov-like function and paths
satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed
to exist, for specific problems it could still be difficult to find
or construct them. We then derive certain rules to construct
the Lyapunov-like function and paths of a new problem from
primitives problems with known Lyapunov-like function and
paths. This process allows us to reuse and extend known
results as the problem changes and grows. Finally, we apply
the proposed approach to two specific problems, Optimal
Power Flow and low rank SDP. Our work proves the first
known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
non-convex problem [25], [26], [9], [27]. In the recent years,
there have been considerable analytical works on the provable
conditions for the relaxation exactness, which are summarized
in the reviews [28], [29] and references therein. However, few
analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
authors’ knowledge, this is the first analytical result of its kind,
and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x 2 X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x 2 X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ✓ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ ! R is convex and
continuous over X̂ . We do not require the relaxation X̂ to be
efficiently represented.

Definition 1. A point xlo
2 X is called a local optimum of

(1) if there exists a � > 0 such that f(xlo)  f(x) for all
x 2 X with kx� xlo

k < �.

Definition 2 (Strong Exactness). We say the relaxation (2) is
exact with respect to (1) if any optimal point of (2) is feasible,
and hence globally optimal, for (1).

Unless otherwise specified, we will always use the term
exact to refer to such strong exactness. Definition 2 implies
in particular that, if (2) is exact, then 8x̂ 2 X̂ \ X , f(x̂) >
minx2X̂

f(x).

Definition 3. A path in S ✓ Kn connecting point a to point
b is a continuous function h : [0, 1] ! S such that h(0) = a
and h(1) = b.

We may refer to a path by the corresponding function h in
the remainder of the paper.

Lemma 1. The following are equivalent:

𝑋 : compact, nonconvex

𝑓 : continuous, convex

Conditions for
Exact

Relaxation and
Local

Optimality

Fengyu Zhou

Motivation

Setup and
Preliminaries

Main Results

Applications

Remarks

Setup and Preliminaries

(Potentially) non-convex optimization:

min
x

f (x)

s.t. x 2 X (O)

convex relaxation:

min
x

f (x)

s.t. x 2 X̂ (R)

Assumptions

• X ✓ X̂ ✓ Rn or Cn

• both X and X̂ are non-empty and compact (i.e., closed and bounded)

• X̂ is a convex set while X is generally not

• f is convex and continuous over X̂

Definition

Problem (R) is exact w.r.t. (O) i↵ any optimal point of (R) is feasible, and hence
globally optimal, for (O).
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Relaxation (2) is exact if there exists optimal solution of (2) 
that is optimal for (1)

Key result [Zhou 2020]:  Lyapunov-like conditions for
• Relaxation (2) is exact; and
• Any local optimum of (1) is globally optimal 
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instances which have no spurious local optima. In contrast,
many real-world non-convex problems do fall within such
intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
set is not a Riemannian manifold, or the Riemannian gradient
and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.

Our conditions have two parts. The first part, which also
appeared in [18], is on the sufficient condition. Roughly speak-
ing, if for any relaxed point, there exists a path connecting it
to the non-convex feasible set and the path satisfies

• along the path the cost is non-increasing,
• along the path the ‘distance’ to the non-convex feasible

set is non-increasing,
then the problem must have exact relaxation and no spurious
local optima simultaneously. Here the ‘distance’ can be any
properly constructed function, as we will define later as a
Lyapunov-like function (Definition 10). The second part is on
the necessary condition, which says that if a problem does have
exact relaxation and no spurious local optima simultaneously,
then there must exist such Lyapunov-like function and paths
satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed
to exist, for specific problems it could still be difficult to find
or construct them. We then derive certain rules to construct
the Lyapunov-like function and paths of a new problem from
primitives problems with known Lyapunov-like function and
paths. This process allows us to reuse and extend known
results as the problem changes and grows. Finally, we apply
the proposed approach to two specific problems, Optimal
Power Flow and low rank SDP. Our work proves the first
known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
non-convex problem [25], [26], [9], [27]. In the recent years,
there have been considerable analytical works on the provable
conditions for the relaxation exactness, which are summarized
in the reviews [28], [29] and references therein. However, few
analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
authors’ knowledge, this is the first analytical result of its kind,
and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x 2 X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x 2 X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ✓ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ ! R is convex and
continuous over X̂ . We do not require the relaxation X̂ to be
efficiently represented.

Definition 1. A point xlo
2 X is called a local optimum of

(1) if there exists a � > 0 such that f(xlo)  f(x) for all
x 2 X with kx� xlo

k < �.

Definition 2 (Strong Exactness). We say the relaxation (2) is
exact with respect to (1) if any optimal point of (2) is feasible,
and hence globally optimal, for (1).

Unless otherwise specified, we will always use the term
exact to refer to such strong exactness. Definition 2 implies
in particular that, if (2) is exact, then 8x̂ 2 X̂ \ X , f(x̂) >
minx2X̂

f(x).

Definition 3. A path in S ✓ Kn connecting point a to point
b is a continuous function h : [0, 1] ! S such that h(0) = a
and h(1) = b.

We may refer to a path by the corresponding function h in
the remainder of the paper.

Lemma 1. The following are equivalent:

Convex relaxation:
!𝑋 : compact, convex, 𝑋 ⊆ !𝑋 ⊆ 𝐾!
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instances which have no spurious local optima. In contrast,
many real-world non-convex problems do fall within such
intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
set is not a Riemannian manifold, or the Riemannian gradient
and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.

Our conditions have two parts. The first part, which also
appeared in [18], is on the sufficient condition. Roughly speak-
ing, if for any relaxed point, there exists a path connecting it
to the non-convex feasible set and the path satisfies

• along the path the cost is non-increasing,
• along the path the ‘distance’ to the non-convex feasible

set is non-increasing,
then the problem must have exact relaxation and no spurious
local optima simultaneously. Here the ‘distance’ can be any
properly constructed function, as we will define later as a
Lyapunov-like function (Definition 10). The second part is on
the necessary condition, which says that if a problem does have
exact relaxation and no spurious local optima simultaneously,
then there must exist such Lyapunov-like function and paths
satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed
to exist, for specific problems it could still be difficult to find
or construct them. We then derive certain rules to construct
the Lyapunov-like function and paths of a new problem from
primitives problems with known Lyapunov-like function and
paths. This process allows us to reuse and extend known
results as the problem changes and grows. Finally, we apply
the proposed approach to two specific problems, Optimal
Power Flow and low rank SDP. Our work proves the first
known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
non-convex problem [25], [26], [9], [27]. In the recent years,
there have been considerable analytical works on the provable
conditions for the relaxation exactness, which are summarized
in the reviews [28], [29] and references therein. However, few
analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
authors’ knowledge, this is the first analytical result of its kind,
and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x 2 X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x 2 X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ✓ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ ! R is convex and
continuous over X̂ . We do not require the relaxation X̂ to be
efficiently represented.

Definition 1. A point xlo
2 X is called a local optimum of

(1) if there exists a � > 0 such that f(xlo)  f(x) for all
x 2 X with kx� xlo

k < �.

Definition 2 (Strong Exactness). We say the relaxation (2) is
exact with respect to (1) if any optimal point of (2) is feasible,
and hence globally optimal, for (1).

Unless otherwise specified, we will always use the term
exact to refer to such strong exactness. Definition 2 implies
in particular that, if (2) is exact, then 8x̂ 2 X̂ \ X , f(x̂) >
minx2X̂

f(x).

Definition 3. A path in S ✓ Kn connecting point a to point
b is a continuous function h : [0, 1] ! S such that h(0) = a
and h(1) = b.

We may refer to a path by the corresponding function h in
the remainder of the paper.

Lemma 1. The following are equivalent:

𝑋 : compact, nonconvex

𝑓 : continuous, convex

Setup



Definition: A path from 𝑥 ∈ #𝑋 ∖ 𝑋 to 𝑋 is a continuous function 
ℎ%: 0,1 → #𝑋 such that ℎ% 0 = 𝑥 and ℎ% 1 ∈ 𝑋

Lemma [Zhou 2020]

(2) is exact ⟺∀𝑥 ∈ #𝑋 ∖ 𝑋 there is a path ℎ% from 𝑥 to 𝑋 such that
• 𝑓 ℎ%(𝑡) nonincreasing in 𝑡
• 𝑓 ℎ%(1) < 𝑓 ℎ%(0)

Exact relaxation



Definition: A Lyapunov-like function is a continuous 
function 𝑉: $𝑋 → ℝ& such that 

𝑉 𝑥 )= 0 𝑥 ∈ 𝑋
> 0 𝑥 ∈ $𝑋 ∖ 𝑋

Conditions for
Exact

Relaxation and
Local

Optimality

Fengyu Zhou

Motivation

Setup and
Preliminaries

Main Results

Applications

Remarks

Setup and Preliminaries

Definition

A Lyapunov-like function associated with (O) and (R) is a continuous function
V : X̂ ! R such that V (x) = 0 for x 2 X and V (x) > 0 for x 2 X̂ \ X .

Matlab logo: https://www.mathworks.com/help/matlab/visualize/creating-the-matlab-logo.html
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X

X̂ \ X
X

V (x)

Lyapunov-like function



Our case
n Trajectory (path 𝑦 𝑡 = ℎ%(𝑡)) is not specified

Standard Lyapunov function
n Dynamical system:  𝑦̇ = 𝑓(𝑦 𝑡 )
n Global asymptotic stability: 𝑦 𝑡 → 𝑦∗

n Stability certificate: Lyapunov function 𝑉(𝑦) s.t.
1. 𝑉 𝑦 > 0 if 𝑦 ≠ 𝑦∗, = 0 if 𝑦 = 𝑦∗

2. 𝑉̇(𝑦 𝑡 ) < 0 along trajectory 𝑦(𝑡)

n Goal is to enter 𝑋: 𝑥 = 𝑦(0) → 𝑦(1) ∈ 𝑋
n Lyapunov-like 𝑉(𝑦) s.t.

1. 𝑉 𝑦 > 0 if 𝑦 ≠ 𝑦∗, = 0 if 𝑦 = 𝑦∗

2. 𝐶1: 𝑉(𝑦 𝑡 ) non-increasing along trajectory 𝑦(𝑡)
n Cost 𝑓(𝑦 𝑡 )must be non-increasing along 𝑦(𝑡) and 𝑦 1 < 𝑦 0 = 𝑥

Lyapunov-like function



No spurious local optima
Conditions: ∃ paths ℎ%: 𝑥 ∈ $𝑋 ∖ 𝑋 and a Lyapunov-like function 𝑉 such that

n C1: both 𝑓 ℎ%(𝑡) and 𝑉 ℎ%(𝑡) are non-increasing for 𝑡 ∈ 0, 1 , and
𝑓 ℎ%(0) > 𝑓 ℎ%(1)

C1: 

n C2: ℎ%: 𝑥 ∈ 1𝑋 ∖ 𝑋 is uniformly bounded and uniformly equicontinuous



No spurious local optima
Conditions: ∃ paths ℎ%: 𝑥 ∈ $𝑋 ∖ 𝑋 and a Lyapunov-like function 𝑉 such that

n C1: both 𝑓 ℎ%(𝑡) and 𝑉 ℎ%(𝑡) are non-increasing for 𝑡 ∈ 0, 1 , and
𝑓 ℎ%(0) > 𝑓 ℎ%(1)

n C2: ℎ%: 𝑥 ∈ 1𝑋 ∖ 𝑋 is uniformly bounded and uniformly equicontinuous

Theorem [Zhou 2020]
n C1, C2       ⟸ all local optima of (1) globally optimal & (2) exact 

Are C1, C2 sufficient ?



No spurious local optima
Conditions: ∃ paths ℎ%: 𝑥 ∈ $𝑋 ∖ 𝑋 and a Lyapunov-like function 𝑉 such that

n C1: both 𝑓 ℎ%(𝑡) and 𝑉 ℎ%(𝑡) are non-increasing for 𝑡 ∈ 0, 1 , and
𝑓 ℎ%(0) > 𝑓 ℎ%(1)

n C2: ℎ%: 𝑥 ∈ 1𝑋 ∖ 𝑋 is uniformly bounded and uniformly equicontinuous

Conditions for
Exact

Relaxation and
Local

Optimality

Fengyu Zhou

Motivation

Setup and
Preliminaries

Main Results

Applications

Remarks

Local Optima Classification

Definition

Each local optimum x lo of (O) is classified into 3 disjoint classes.

• Global optimum (g.o.): if f (x lo)  f (x) for all x 2 X .

• Pseudo local optimum (p.l.o.): if there exists a path h : [0, 1] ! X such that
h(0) = x lo, f (h(t)) ⌘ f (x lo) for all t 2 [0, 1] and h(1) is not a local optimum.

• Genuine local optimum (g.l.o.): if it is neither a g.o. nor p.l.o.

Examples

Global optimum (g.o.): b
Pseudo local optimum (p.l.o.): c
Genuine local optimum (g.l.o.): a, d

X

a

b

c

d
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• C1, C2 eliminate genuine local optimal (a, d)
• C3 eliminates pseudo local optimum (c)

Local algorithm may converge to any local optimum:
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Lemma 3. If (1) is exact with respect to (2) and (1) has no
genuine local optima, then the feasible set of (1) is connected.

Proof. If X is not connected, then by definition X can be
partitioned into two disjoint non-empty closed sets X1 and X2

with X = X1[X2, which are hence both compact. Further we
let xi be any global optimum of minx2Xi f(x) for i = 1, 2.
Clearly x1 6= x2 and they are both local optima of (1).

If f(x1) = f(x2), then any convex combination of x1,
x2 must be a global optimum to (2). Since there is no path
in X that connects x1 and x2, there must be some convex
combination that is outside X . This contradicts the exactness
of relaxation.

If f(x1) 6= f(x2), without loss of generality we assume
f(x1) < f(x2), i.e., x2 is not a global optimum of (1). But
x2 is not a pseudo local optimum of (1) either, contradicting
Theorem 1. To see this, note that any point x0

2 X which is
connected to x2 via a path in X must also be a point in X2

and if f(x0) = f(x2) then x0 must be a local optimum of (1)
as well.

Corollary 2. Condition (C) implies that the feasible set of (1)
is connected.

Now we are in a good position to discuss some conditions
that rule out pseudo local optima and therefore guarantee that
any local optimum must be a global optimum.

Corollary 3. If all local optima of (1) are isolated, then
Condition (C) implies that any local optimum of (1) is a global
optimum.

Here, local optima being isolated means any local optimum
of (1) has an open neighborhood which contains no other local
optimum. The proof is straightforward as by definition isolated
local optimum could not be pseudo local optimum. In fact, in
this case the optimum can be proved to be also unique.

Another way to eliminate pseudo local optima is by
strengthening the monotonicity of f(hx(t)) in Condition (C).
Consider the following condition which is slightly stronger
than (C).

(C’) Condition (C) holds, and there exists k > 0 such that
8x 2 X̂ \ X , 80  t < s  1 we have

f(hx(t))� f(hx(s)) � kkhx(t)� hx(s)k. (3)

In Condition (C’), k · k could be any norm on Kn. As a
caveat, `0-“norm” is not allowed here as it is not a norm
since it does not satisfy k↵xk = |↵|kxk. Note that Condition
(C) already implies f(hx(t)) � f(hx(s)) � 0, while (C’)
strengthens this condition by enforcing a positive lower bound
depending on hx.

Theorem 2. If (C’) holds, then any local optimum of (1) must
be a global optimum.

Proof. Following the proof of Theorem 1, suppose x 2 X is a
local but not global optimum for (1). Then we have x = `(t†)
and could obtain a limit point of the sequence hm, denoted as
h. Since both sides of (3) are continuous in hm(t) and hm(s),

and the limits of hm(t) and hm(s) are h(t) and h(s), we must
have whenever h(t) 6= h(s),

f(h(t))� f(h(s)) � kkh(t)� h(s)k > 0.

Taking t = 0 we can conclude that h(0) (which is the same
point as x) is not a local optimum of (1).

IV. NECESSARY CONDITIONS

In this section we will study the necessary conditions for a
non-convex problem to have exact relaxation and no spurious
local optima simultaneously. It turns out the results are not
exactly the converses of Theorem 1 or Theorem 2, but in a
slightly weaker sense. Specifically, we show that if a non-
convex problem is known to have exact relaxation and no
spurious local optima simultaneously, then the Lyapunov-like
function and paths satisfying Condition (C) are guaranteed to
exist. However, it still may or may not be easy to find those
functions or paths in practice for a specific problem.

A. Results
Assumption 1. The feasible set X is semianalytic and the
cost function f is analytic.

We refer to [31] for more detailed definitions and properties
of semianalytic sets. This assumption is not restrictive for most
of the engineering problems. If K is chosen as C, then we
suggest to view all the complex functions as functions of real
variables by separating the real and imaginary parts, and the
space of Cn can be viewed as a shorthand for R2n in this
section.

Theorem 3 (necessary condition). If (2) is exact to (1) and
any local optimum of (1) is also globally optimal, then there
always exists a Lyapunov-like function V and a corresponding
family of paths {hx}x2X̂\X

satisfying (C1) and (C2).

Remark 3. Note that Theorem 3 is NOT the converse of The-
orem 1 in the very precise sense. There are a few differences
in their settings.

• Theorem 1 allows pseudo local optimum (in the conclu-
sion) of the theorem, while Theorem 3 disallows it (in the
premise).

• Theorem 3 relies on Assumption 1 while Theorem 1 does
not.

B. Proof Setup
In the rest of the section, we will prove Theorem 3.

From now on, we assume (2) is exact to (1) and any local
optimum of (1) is also globally optimal. We first have the
following definition and lemmas, which are the main reasons
we introduced Assumption 1.

Definition 11 (Whitney regularity [31], [32], [33]). For a
compact set U ⇢ Kn and a positive integer p, we say U

is p-regular if there exists C > 0 such that 8x, y 2 U ,
x, y can be joined by a rectifiable curve h in U satisfying
L(h)  Ckx� yk1/p.

n C3: ∃ 𝑘 > 0 such that



No spurious local optima
Conditions: ∃ paths ℎ%: 𝑥 ∈ $𝑋 ∖ 𝑋 and a Lyapunov-like function 𝑉 such that

n C1: both 𝑓 ℎ%(𝑡) and 𝑉 ℎ%(𝑡) are non-increasing for 𝑡 ∈ 0, 1 , and
𝑓 ℎ%(0) > 𝑓 ℎ%(1)

n C2: ℎ%: 𝑥 ∈ 1𝑋 ∖ 𝑋 is uniformly bounded and uniformly equicontinuous
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Lemma 3. If (1) is exact with respect to (2) and (1) has no
genuine local optima, then the feasible set of (1) is connected.

Proof. If X is not connected, then by definition X can be
partitioned into two disjoint non-empty closed sets X1 and X2

with X = X1[X2, which are hence both compact. Further we
let xi be any global optimum of minx2Xi f(x) for i = 1, 2.
Clearly x1 6= x2 and they are both local optima of (1).

If f(x1) = f(x2), then any convex combination of x1,
x2 must be a global optimum to (2). Since there is no path
in X that connects x1 and x2, there must be some convex
combination that is outside X . This contradicts the exactness
of relaxation.

If f(x1) 6= f(x2), without loss of generality we assume
f(x1) < f(x2), i.e., x2 is not a global optimum of (1). But
x2 is not a pseudo local optimum of (1) either, contradicting
Theorem 1. To see this, note that any point x0

2 X which is
connected to x2 via a path in X must also be a point in X2

and if f(x0) = f(x2) then x0 must be a local optimum of (1)
as well.

Corollary 2. Condition (C) implies that the feasible set of (1)
is connected.

Now we are in a good position to discuss some conditions
that rule out pseudo local optima and therefore guarantee that
any local optimum must be a global optimum.

Corollary 3. If all local optima of (1) are isolated, then
Condition (C) implies that any local optimum of (1) is a global
optimum.

Here, local optima being isolated means any local optimum
of (1) has an open neighborhood which contains no other local
optimum. The proof is straightforward as by definition isolated
local optimum could not be pseudo local optimum. In fact, in
this case the optimum can be proved to be also unique.

Another way to eliminate pseudo local optima is by
strengthening the monotonicity of f(hx(t)) in Condition (C).
Consider the following condition which is slightly stronger
than (C).

(C’) Condition (C) holds, and there exists k > 0 such that
8x 2 X̂ \ X , 80  t < s  1 we have

f(hx(t))� f(hx(s)) � kkhx(t)� hx(s)k. (3)

In Condition (C’), k · k could be any norm on Kn. As a
caveat, `0-“norm” is not allowed here as it is not a norm
since it does not satisfy k↵xk = |↵|kxk. Note that Condition
(C) already implies f(hx(t)) � f(hx(s)) � 0, while (C’)
strengthens this condition by enforcing a positive lower bound
depending on hx.

Theorem 2. If (C’) holds, then any local optimum of (1) must
be a global optimum.

Proof. Following the proof of Theorem 1, suppose x 2 X is a
local but not global optimum for (1). Then we have x = `(t†)
and could obtain a limit point of the sequence hm, denoted as
h. Since both sides of (3) are continuous in hm(t) and hm(s),

and the limits of hm(t) and hm(s) are h(t) and h(s), we must
have whenever h(t) 6= h(s),

f(h(t))� f(h(s)) � kkh(t)� h(s)k > 0.

Taking t = 0 we can conclude that h(0) (which is the same
point as x) is not a local optimum of (1).

IV. NECESSARY CONDITIONS

In this section we will study the necessary conditions for a
non-convex problem to have exact relaxation and no spurious
local optima simultaneously. It turns out the results are not
exactly the converses of Theorem 1 or Theorem 2, but in a
slightly weaker sense. Specifically, we show that if a non-
convex problem is known to have exact relaxation and no
spurious local optima simultaneously, then the Lyapunov-like
function and paths satisfying Condition (C) are guaranteed to
exist. However, it still may or may not be easy to find those
functions or paths in practice for a specific problem.

A. Results
Assumption 1. The feasible set X is semianalytic and the
cost function f is analytic.

We refer to [31] for more detailed definitions and properties
of semianalytic sets. This assumption is not restrictive for most
of the engineering problems. If K is chosen as C, then we
suggest to view all the complex functions as functions of real
variables by separating the real and imaginary parts, and the
space of Cn can be viewed as a shorthand for R2n in this
section.

Theorem 3 (necessary condition). If (2) is exact to (1) and
any local optimum of (1) is also globally optimal, then there
always exists a Lyapunov-like function V and a corresponding
family of paths {hx}x2X̂\X

satisfying (C1) and (C2).

Remark 3. Note that Theorem 3 is NOT the converse of The-
orem 1 in the very precise sense. There are a few differences
in their settings.

• Theorem 1 allows pseudo local optimum (in the conclu-
sion) of the theorem, while Theorem 3 disallows it (in the
premise).

• Theorem 3 relies on Assumption 1 while Theorem 1 does
not.

B. Proof Setup
In the rest of the section, we will prove Theorem 3.

From now on, we assume (2) is exact to (1) and any local
optimum of (1) is also globally optimal. We first have the
following definition and lemmas, which are the main reasons
we introduced Assumption 1.

Definition 11 (Whitney regularity [31], [32], [33]). For a
compact set U ⇢ Kn and a positive integer p, we say U

is p-regular if there exists C > 0 such that 8x, y 2 U ,
x, y can be joined by a rectifiable curve h in U satisfying
L(h)  Ckx� yk1/p.

n C3: ∃ 𝑘 > 0 such that

Theorem [Zhou 2020]
n C1, C2       ⟸ all local optima of (1) globally optimal & (2) exact 
n C1, C2, C3 ⟹ all local optima of (1) globally optimal & (2) exact 

Applications: OPF, low rank SDP, …



Conditions: ∃ paths ℎ%: 𝑥 ∈ $𝑋 ∖ 𝑋 and a Lyapunov-like function 𝑉 such that
n C1: both 𝑓 ℎ%(𝑡) and 𝑉 ℎ%(𝑡) are non-increasing for 𝑡 ∈ 0, 1 , and

𝑓 ℎ%(0) > 𝑓 ℎ%(1)
n C2: ℎ%: 𝑥 ∈ 1𝑋 ∖ 𝑋 is uniformly bounded and uniformly equicontinuous
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Lemma 3. If (1) is exact with respect to (2) and (1) has no
genuine local optima, then the feasible set of (1) is connected.

Proof. If X is not connected, then by definition X can be
partitioned into two disjoint non-empty closed sets X1 and X2

with X = X1[X2, which are hence both compact. Further we
let xi be any global optimum of minx2Xi f(x) for i = 1, 2.
Clearly x1 6= x2 and they are both local optima of (1).

If f(x1) = f(x2), then any convex combination of x1,
x2 must be a global optimum to (2). Since there is no path
in X that connects x1 and x2, there must be some convex
combination that is outside X . This contradicts the exactness
of relaxation.

If f(x1) 6= f(x2), without loss of generality we assume
f(x1) < f(x2), i.e., x2 is not a global optimum of (1). But
x2 is not a pseudo local optimum of (1) either, contradicting
Theorem 1. To see this, note that any point x0

2 X which is
connected to x2 via a path in X must also be a point in X2

and if f(x0) = f(x2) then x0 must be a local optimum of (1)
as well.

Corollary 2. Condition (C) implies that the feasible set of (1)
is connected.

Now we are in a good position to discuss some conditions
that rule out pseudo local optima and therefore guarantee that
any local optimum must be a global optimum.

Corollary 3. If all local optima of (1) are isolated, then
Condition (C) implies that any local optimum of (1) is a global
optimum.

Here, local optima being isolated means any local optimum
of (1) has an open neighborhood which contains no other local
optimum. The proof is straightforward as by definition isolated
local optimum could not be pseudo local optimum. In fact, in
this case the optimum can be proved to be also unique.

Another way to eliminate pseudo local optima is by
strengthening the monotonicity of f(hx(t)) in Condition (C).
Consider the following condition which is slightly stronger
than (C).

(C’) Condition (C) holds, and there exists k > 0 such that
8x 2 X̂ \ X , 80  t < s  1 we have

f(hx(t))� f(hx(s)) � kkhx(t)� hx(s)k. (3)

In Condition (C’), k · k could be any norm on Kn. As a
caveat, `0-“norm” is not allowed here as it is not a norm
since it does not satisfy k↵xk = |↵|kxk. Note that Condition
(C) already implies f(hx(t)) � f(hx(s)) � 0, while (C’)
strengthens this condition by enforcing a positive lower bound
depending on hx.

Theorem 2. If (C’) holds, then any local optimum of (1) must
be a global optimum.

Proof. Following the proof of Theorem 1, suppose x 2 X is a
local but not global optimum for (1). Then we have x = `(t†)
and could obtain a limit point of the sequence hm, denoted as
h. Since both sides of (3) are continuous in hm(t) and hm(s),

and the limits of hm(t) and hm(s) are h(t) and h(s), we must
have whenever h(t) 6= h(s),

f(h(t))� f(h(s)) � kkh(t)� h(s)k > 0.

Taking t = 0 we can conclude that h(0) (which is the same
point as x) is not a local optimum of (1).

IV. NECESSARY CONDITIONS

In this section we will study the necessary conditions for a
non-convex problem to have exact relaxation and no spurious
local optima simultaneously. It turns out the results are not
exactly the converses of Theorem 1 or Theorem 2, but in a
slightly weaker sense. Specifically, we show that if a non-
convex problem is known to have exact relaxation and no
spurious local optima simultaneously, then the Lyapunov-like
function and paths satisfying Condition (C) are guaranteed to
exist. However, it still may or may not be easy to find those
functions or paths in practice for a specific problem.

A. Results
Assumption 1. The feasible set X is semianalytic and the
cost function f is analytic.

We refer to [31] for more detailed definitions and properties
of semianalytic sets. This assumption is not restrictive for most
of the engineering problems. If K is chosen as C, then we
suggest to view all the complex functions as functions of real
variables by separating the real and imaginary parts, and the
space of Cn can be viewed as a shorthand for R2n in this
section.

Theorem 3 (necessary condition). If (2) is exact to (1) and
any local optimum of (1) is also globally optimal, then there
always exists a Lyapunov-like function V and a corresponding
family of paths {hx}x2X̂\X

satisfying (C1) and (C2).

Remark 3. Note that Theorem 3 is NOT the converse of The-
orem 1 in the very precise sense. There are a few differences
in their settings.

• Theorem 1 allows pseudo local optimum (in the conclu-
sion) of the theorem, while Theorem 3 disallows it (in the
premise).

• Theorem 3 relies on Assumption 1 while Theorem 1 does
not.

B. Proof Setup
In the rest of the section, we will prove Theorem 3.

From now on, we assume (2) is exact to (1) and any local
optimum of (1) is also globally optimal. We first have the
following definition and lemmas, which are the main reasons
we introduced Assumption 1.

Definition 11 (Whitney regularity [31], [32], [33]). For a
compact set U ⇢ Kn and a positive integer p, we say U

is p-regular if there exists C > 0 such that 8x, y 2 U ,
x, y can be joined by a rectifiable curve h in U satisfying
L(h)  Ckx� yk1/p.

n C3: ∃ 𝑘 > 0 such that
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Application to OPF

Non-convex problem:

min
s,v ,`,S

f (s)

s.t. convex constr.

vj`jk = |Sjk |2

Relaxed problem:

min
s,v ,`,S

f (s)

s.t. convex constr.

vj`jk � |Sjk |2

Construction

V :=
P
jk

vk`jk � |Sjk |2

hx : linearly decrease `jk and linearly adjust s, S
accordingly.
This construction satisfies both C and C*.

Theorem

If there are no lower bounds for sj , i.e., bus
injections, then any local optimum of the original
non-convex OPF is also a global optimum.

First result on the local optimality for non-convex OPF problem. Zhou F, Low SH.

CDC 2020
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[Zhou, Low CDC2020]

Baran-Wu 1989 DistFlow model
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Application to OPF

Non-convex problem:

min
s,v ,`,S

f (s)

s.t. convex constr.

vj`jk = |Sjk |2

Relaxed problem:

min
s,v ,`,S

f (s)

s.t. convex constr.

vj`jk � |Sjk |2

Construction (a 2-bus example)

• V := v1`12 � |S12|2

• For x 2 X̂ \ X , we have |S12|2 � v1`12 < 0.

• Let � be the positive root of
|z12|2
4 a2+

�
v1�Re(z12SH

12)
�
a+ |S12|2� v1`12

• Consider the path:

s̃j(t) = sj �
t

2
z12�� t

2
z12�,

ṽj(t) = vj ,

˜̀
12(t) = `12 � t�,

S̃12(t) = S12 �
t

2
z12�.
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Construction satisfies C1, C2, C3
• SOCP relaxation is exact
• Local optima are globally optimal



Summary
OPF is nonconvex & NP hard

OPF is “easy” in practice
§ Semidefinite relaxations often exact
§ Local algorithms often globally optimal

Analytical properties
§ Exact relaxation
§ No spurious local optima


