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New Challenges on Load Forecasting

Rapid Growth of Behind-the-Meter (BTM) Assets and Huge Potentials

200 GW (20% peak load) flexibility potential in U.S. by 2030 [1]
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[1]  R. Hledik, A. Faruqui, T. Lee, and J. Higham, “The National Potential for Load Flexibility: Value and market potential through 2030,” The Brattle Group, 2019.
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Whole House Power Consumption

Asset Consumption/Generation

Visibility of BTM DERs

Smart Meter
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BTM DER Visibility
• Better quantify the 

impact on net load
• Analyze impact of DERs 

on distribution systems
• Accommodate DER 
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Model-Based Load Forecasting

• Model-based load forecasting
– Model predictive control
– Weather forecasts as input
– Load consumption and 

flexibility forecasting

• Home energy management 
system
– Real-time control of 

appliances
– Improve energy efficiency
– Reduce energy cost
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Data-Driven Forecasting

• Motivation
– Load profiles close to end users have 

more abrupt variations

• Approach [2]

– Support vector regression
– Two-step hybrid parameters 

optimization

• Simulation Results
– 80 days of load captured from a 

partner utility’s distribution feeder

Minutes-ahead Forecasting

Performance Comparison

Time Consumption Comparison[2] H. Jiang, Y. Zhang, E. Muljadi, J. J. Zhang, and D. W. Gao, “A Short-Term and High-Resolution Distribution System Load Forecasting 
Approach Using Support Vector Regression With Hybrid Parameters Optimization,” IEEE Transactions on Smart Grid, vol. 9, no. 4, July 2018.
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Deep Learning with BTM PV Visibility

• Probabilistic net-load forecasting 
with BTM PV disaggregation

– Visibility into the BTM PV 
systems through disaggregation

– Point and probabilistic 
forecasting through deep 
learning

– Transfer learning to ensure 
generalization to diverse 
locations with different sensor 
data availability
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[3] F. Kabir, N. Yu, W. Yao, R. Yang, and Y. Zhang, “Estimation of Behind-the-Meter Solar Generation by Integrating Physical with Statistical Model,” IEEE International Conference on Communications, Control, and Computing 
Technologies for Smart Grids, Beijing, China, Nov. 2019.

Estimation of BTM PV

• Key innovation: Physical + statistical 
models

• Estimation of solar generation 𝑆
– Estimation of solar PV parameters 𝜃!
– Physical PV system performance model 𝑔

• Estimation of load 𝐿
– Statistical hidden Markov model 

regression
– Variables: hour of the day, temperature, 

weekday/weekend

• Iterative method [3]
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Probabilistic Estimation of BTM PV

• Key innovation: Probabilistic estimation with uncertainty quantification

• Method: Bayesian structural time series (BSTS) model [4]

• Model:

[4] S. Shaffery, R. Yang, and Y. Zhang, “Bayesian Structural Time Series for Behind-the-Meter Photovoltaic Disaggregation,” The Eleventh Conference on Innovative Smart Grid Technologies, Washington D.C., Feb. 2020.

Synthetic state space model

• Fitting is performed by combining Kalman 
Filtering and Markov Chain Monte Carlo.
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Conclusion

• Lack of visibility of BTM DERs
• Volatility and uncertainty at more 

granular spatiotemporal scales
• Generalization of machine learning 

methods

• Understanding BTM resources is 
crucial yet challenging

• Model-based and data-driven 
methods 

Key takeaways: Challenges:
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